Link/Page Citation
Author(s): Marina Mefleh (corresponding author) [1,*]; Amira M. Galal Darwish [2,3]; Priti Mudgil [4]; Sajid Maqsood [4,5]; Fatma Boukid (corresponding author) [6,*]
1. Introduction
Southern Mediterranean countries, especially the neighboring countries, share the same dietary habits and food culture [1]. Milk has a symbolic value of life and fertility in the lives of people residing there [2]. In fact, the Middle East has a rich portfolio of traditional dairy products as they were among the first countries to start animal domestication [3,4]. Milk is a highly perishable product, and thus, fermented dairy products represent important sources of energy and nutrients in a time of crisis because of their long shelf lives. Fermentation is one of the oldest food preservation techniques [5]. The traditional methods of making fermented foods have been passed down through generations. Although fermented products have been essential parts of the diet in the region for centuries, scientific knowledge and studies on some traditional fermented milk products is still limited.
Traditional fermented milk products are known for their peculiar organoleptic features, nutritional value, and therapeutic properties [6,7,8]. In the MENA region, there is a wide variety of artisanal dairy products, and their denomination and manufacturing processes differ between regions [9]. These products also differ in their taste and their consistency, and they can be categorized into drinkable yogurt, spoonable yogurt, butter, and cheese (Appendix A). These products are made by fermenting raw milk at room temperature by using spontaneous fermentation, back-slopping fermentation, or a specific starter and/or rennet addition [10,11]. Fermentation is a simple process that does not require intensive labor; it extends shelf life and improves organoleptic features [12]. Traditional fermented products contain natural complex microbial communities that have various beneficial effects [11]. Fermentation imparts health benefits in association with the presence of probiotic bacteria (Lactobacillus, Bifidobacterium, Streptococcus, Leuconostoc, Propionibacterium, Bacillus, and Enterococcus) and their derived products with health benefits, such fatty acids, amino acids, minerals, and vitamins [6,10]. Fermented dairy products are generally considered microbiologically safe because they have a pH lower than 4.5 [13]. Below that level, the growth of most micro-organisms is inhibited [14].
Several traditional products are gaining interest because of their preferred sensory attributes as well as their health promoting benefits, and thus, they are industrialized and commercialized worldwide. Nevertheless, the use of modern processing and commercial starter cultures to recreate the authentic taste and flavor is challenging. Thus, further understanding and improvements in the traditional fermentation methods would contribute to finding safer and better standards while preserving the original flavor. In this context, this review aims to document the most popular traditional fermented dairy products (listed in Table 1) originating from Algeria, Egypt, Libya, Morocco, Tunisia, Lebanon, Syria, and Palestine. Each section intends to explain the indigenous raw ingredients, preparation techniques, and characteristics of these traditional products. Moreover, innovative approaches currently being implemented to introduce improved versions of these traditional products are also discussed.
2. Traditional Dairy Fermentation Methods
Dairy products from spontaneous milk fermentation have been produced and consumed for thousands of years [9,16]. Spontaneous fermentation consists of the “natural” fermentation of raw milk for hours to days at room temperature. This fermentation is mediated by indigenous microflora, especially lactic acid bacteria and exogenous micro-organisms (contamination) [17]. Even though the fermentation process was studied for years, the naturally occurring bacteria had not yet been fully deciphered until now. Spontaneously fermented milk products can serve as a model system for investigating microbial ecology and evolutionary adaptations [11]. However, the main concerns over natural milk fermentation are associated with the high initial contamination [18], the inadequate hygiene conditions during the artisanal process [5,19], and the absence of any thermal treatment [9,20].
Back-slopping is another “natural” fermentation process that consists of adding a small quantity of old fermented product (yogurt or cheese) as a fermentate into a fresh raw ingredient [21]. The repetition of the identical back-slopping fermentation process stabilizes the microbial community and standardizes the quality and safety of the final product [11,22].
Traditionally, dried abomasa were used to coagulate the milk. At the end of the 19th century, the industrial production of rennet substituted the use of dried abomasum. Commercial rennet (chymosin) is an enzyme extracted from the gastric juices of calf and adult cattle stomachs [23,24]. Rennet contains mainly proteolytic enzymes, and proteolysis is an important part of cheese ripening [25]. Consequently, several types of cheese have special sensory characteristics that are attributed to the type of rennet used [9]. The increase demand for rennet lead to the production of rennet from other sources such as cattle, micro-organisms (e.g., Rhizomucor miehei, Rhizomucor pussillus, Kluyveromyces marxianus var. lactis, and Escherichia coli K-12), and plants (e.g., Calotropis procera and Cynara cardunculus) [23].
3. An Overview of the Traditional Fermented Milks
Fermented milk products are important staples in Southern Mediterranean countries (Table 2). They are produced using milk from cows, goats, ewes, sheep, camels, or buffalo, depending on the country’s livestock farming [26]. According to their consistency, two categories might be identified, i.e., drinkable yogurt and spoonable yogurt.
3.1. Drinking Yogurt
Spontaneously fermented milk, Raib or Rayeb, is produced in many Southern Mediterranean countries [37,38]. Traditionally, raw cow’s, goat’s, buffalo’s, camel’s, or ewe’s milks or mixture of milks are spontaneously fermented at room temperature until coagulation [27,28]. Fermentation has been associated with bacteria (e.g., Lactococcus lactis and Leuconostoc mesenteroides) and yeast (e.g., Saccharomyces and Candida) naturally occurring in raw milks [39,40]. These micro-organisms are responsible for milk acidification, texture change, and aromatization [39]. They are natural probiotics providing several health benefits, such as improving immune system, the blood lipidic profile, and intestinal health [41]. Fermented milk could be consumed directly after fermentation or after manually skimming the fermented product [42]. Industrially, fresh milk is pasteurized (72 °C) to reduce/eliminate pathogens [43]. Then, commercial starters and/or rennet are added to coagulate the pasteurized milk (after cooling) [39]. A ready-to-use starter (Streptococcus termophilus, Lactococci, leuconostocs, or Lactobacillus) is not available, because of the complexity and high biodiversity of the naturally occurring enzymes and micro-organisms [44]. Industrial fermentation results in organoleptic characteristics, including texture, flavor, and taste different from those of the conventional products. This is due to heat treatment (pasteurization) inactivating indigenous milk enzymes that play a pivotal role in the traditional flavor development [27,41].
Buttermilk (“Lben” in Morocco and Algeria, “leben” in Tunisia, and “Iraqi” or “Laban Khad” in Egypt) is made through the spontaneous fermentation of raw milk at room temperature (24–72 h) until coagulation [45]. The spontaneously fermented milk is churned to separate nonbutter fraction from the butter [46]. Lactic bacteria identified in traditional buttermilk belong to Lactococcus lactis, Leuconostoc mesenteroides, and Lactobaccillus plantarum species. The key aromatic compounds are mainly butanoic acid, acetoin, and hexanoic acid [47]. Even though buttermilk is generally considered safe for consumption, pathogenic micro-organisms (e.g., Escerichia coli, Salmonella enteritidis and Staphylococcus aureus) have been detected [15]. Industrially, whole, skimmed, or partially skimmed milk is pasteurized and then fermented using commercial starters, i.e., Lactococcus lactis lactis, Lactococcus lactis diacetylactis, and Lactococcus cremoris [15,21]. Despite the efforts implemented to imitate the organoleptic properties of traditional products, consumers still prefer traditional products because artisanal starters enable a typical flavor (fresh and sour taste) and texture that cannot be reached with the commercial starters. Traditional Lben is characterized by higher protein, lactose, and mineral contents but a lower fat content and acidity than industrial Lben. When traditional Lben was used as an old fermentate instead of commercial starters to make industrial Lben, the resulting fermented milk had a firmer texture and improved taste and mouthfeel [15]. The weak texture of industrial products could be overcome by using thickeners such as starches [48].
Laban in Lebanon or Laban Zabady in Egypt is a spoonable yogurt obtained by back-slopping fermentation. A small quantity of old Laban is used as a starter and added to pasteurized milk (from a cow, goat, sheep, buffalo, or camel). Micro-organisms identified in Laban are Streptococcus termophilus, Leuconostoc lactis, and Lactobacillus acidophilis [30]. The industrial production of Laban is carried out using lactic acid bacteria fermentation (Streptococcus thermophillus and Lactobacillus bulgaricus) at 40–45 ? [31]. Industrialization enabled achieving the constant and standard metabolic starter performance and rheological properties of yogurt. However, consumers prefer the traditional product because of its peculiar taste and flavor [30,31]. Laban is characterized by 1% titratable acidity and a pH of 4.0 [30]). Compared with milk, Laban is a probiotic product with lower cholesterol, fat and protein contents, and higher minerals and vitamins than raw milk [26,49,50].
3.2. Spoonable Yogurt
Labneh or Shaneenah is a sour and creamy product heavily consumed in the Mediterranean region (Lebanon, Egypt, Jordan, and Syria) [34,35,36] and commercialized worldwide. It is obtained by draining Laban or Zabady by using a cheesecloth at room temperature until obtaining the desired solid texture. Labneh is characterized by high-protein (double the content of Laban) and probiotic micro-organisms (more concentrated in viable lactic acid bacteria than yogurt) contents and low-lactose content [51]. Moreover, it has a fat content of 9–11% (if full-fat yogurt is used), a moisture content of around 75%, a pH of around 4.5 and a shelf life of 7 to 10 days [35]. A unique version of Lebanese Labneh, known as Labneh Anbaris, Labnet el-jarra, and Serdaleh, was produced mainly in the rural areas. It is obtained by spontaneously fermenting the milk of a goat, a sheep, or a mix of them with 5% coarse salt for two weeks [52]. Fermentation takes place in specific earthenware jars with holes designed for continuous whey drainage. Jars are refilled with fresh milk at around 30 ? every 5–7 days until the jars are full. Fresh Labneh Anbaris has a firm texture, white color, and high acidic content (pH 3.76) [53]. It is consumed fresh or shaped into small balls and conserved in glass jars filled with olive oil for up to one year. Labneh Anbaris is currently available in the global market as pots of cheese balls covered with oil and preserved at 4–6 °C.
Kishk is widely consumed in Lebanon, Jordan, Egypt, Palestine, and Syria [32]. It is known by different names: keshek, Kishk (Lebanon), kushk, or Kishk Matrouh (Egypt). Kishk is prepared by mixing cereal such as burghul (crushed and parboiled wheat), wheat, or barley with fermented milk (Laban (Lebanon) or buttermilk (Egypt)] from cow, sheep or goat milk in a ratio of (1:1–1:4) and salt (3%) [32,33,54]). The fermentation could take a few days (2 to 7 days) at room temperature, with a daily addition of fermented milk to keep the fermentation active. The obtained paste is kneaded, shaped into balls, and consumed fresh or preserved in glass jars filled with olive oil. Kishk balls also could be sundried, rubbed by hand, or ground (industrially) to obtain Kishk flour with a long shelf life (1 to 2 years) [33]. Kishk flour is characterized by a fat content of 8–10%, low moisture content (10–15%), pungent acidic taste, and low pH (3.80–4.80) [32,55]. Kishk flour is traditionally used as an ingredient to make nutritionally balanced (high in protein and fiber) soups [33].
4. Traditional Butter
Butter is one of the oldest dairy products and is one of the main sources of fat and energy [56]. In North African and Middle East countries, traditional butter (Zebda or Zebda baladi) is produced by churning the spontaneously fermented milk to separate the butter from the buttermilk (Lben) [37,57]. Churning breaks the oil-in-water emulsion, leading to aqueous phase separation and the formation of water-in-oil emulsion. This product is characterized by a strong diacetyl flavor (depending on the source of milk) and savory taste, which is appreciated by consumers [57]. Aldehyde and ketone compounds are characteristics of cow milk butter; acid and terpene are characteristics of sheep butter; and ester, alcohol, and sulfur compounds are characteristics of goat butter [58]. Traditional products have a limited shelf life and need to be consumed within a few days. Prolonged storage inducea a deterioration of odor, color, taste, and nutritional quality due to lipolysis and oxidation [59]. Contaminated raw materials can favor the growth of pathogens such as L. monocytogenes [60]. Industrial butter is widely produced and consumed around the world, directly or as an ingredient in processed foods [56]. After pasteurization, the milk is skimmed to separate the cream from the milk. The collected cream is standardized at 40% fat and a pH of 6.6 and pasteurized. This cream is physically matured, acidified (at pH 5.2), and then churned. After separating the buttermilk, the butter is washed, salted, and processed to reach the desirable consistency [61].
Ghee, also Smen/Dhan in North Africa, Samn Baladi in Egypt, or Samneh in Lebanon, is a fermented butter made from raw whole milk (cow, goat, or buffalo milk either alone or as a mixture) [62,63]. Lactococcus, Lactobacillus, and Leuconostoc are the main microflora involved in ghee fermentation [64]. There are two variants of ghee: rancid butter and butter oil [65,66]. Rancid butter is obtained through the maturation (1–12 months) of raw salted butter (8–10%) made from spontaneously fermented milk [67,68]. This product is highly aromatic and used to improve the taste of many traditional dishes and medicines [63,64,69]. On the other hand, butter oil is produced by heating traditional butter to separate fat from milk serum [57]. Before maturation (1 month to 7 years), several ingredients, including salt, coarse semolina, and herbs, can be added for flavoring and/or preservation purposes [70]. However, lipolysis and oxidation during prolonged storage can reduce the nutritional and organoleptic qualities and induce the rancidity of butter oil [71].
5. An Overview of Traditional Cheeses
The cheese repertoire of Southern Mediterranean countries is rich and contains a wide variety of products, from fresh to hard types (Table 3).
5.1. Soft Cheese
Chnina (also Mechouna, Michouna) is a soft fresh cheese from Algeria (Tébessa area) made using back-slopping fermentation. Fresh goat milk is mixed with buttermilk (at a 1:2 ratio pf buttermilk to milk) and salt. The mixture is heated until coagulation. The recovered curd is drained overnight to completely remove the whey. This cheese has a pH of 5.85 and short shelf life (up to 6 days) [72].
Testouri is a fresh soft cheese made from goat and sheep milk, and it is traditionally consumed in Tunisia [73]. This white cheese is a product obtained after milk coagulation (with rennet) and draining (for whey removal). The curd is kept in brine for flavor improvement and preservation [90]. This cheese is reported to have probiotic effect (conferring health benefits) owing to the presence of E. faecalis OB14 and OB15 [91].
Rigouta is a fresh soft cheese from Tunisia (region of Béja) and is made by the spontaneous fermentation of whey at room temperatures for 1–2 days. Lactococcus lactis and Enterococcus faecalisare are the key micro-organisms in Rigouta fermentation [74]. Fermented whey is then heated for protein coagulation [92]. The curd is drained to obtain fresh cheese, which has a short shelf life (2–3 days) [93,94]. The industrial version of Rigouta in Tunisia is commercialized as “Ricotta”, which has similar process to Italian Ricotta, which is produced by heating whey protein (and milk or cream milk to increase the yield), adding citric acid to induce coagulation, draining, and packaging [95]. The resulting product is characterized by 70–80% moisture, 10–25% fat and 8–10% protein, a pH ranging from 6.10 to 6.80, and a shelf life of 3 weeks at 4 °C [96]. Enterococcus faecalisare is the key microorganism in Rigouta fermentation [74].
Jben, Djben, or Jebena Balady is a soft white cheese traditionally made in the North African and Middle Eastern countries, such as Egypt and Lebanon [45,97]. Jben is produced from spontaneously fermented raw sheep milk or goat milk at ambient temperature for 1 (summer season) to 3 (winter season) days [97]. Fermentation can be accelerated through the addition of coagulating enzymes (e.g., cardosins and cyprosins) from plants (e.g., cardoon, artichoke, or pumpkin) or rennet [75,76]. The main strains occurring in traditional Jben belonged to the genera Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus. In total, 16 species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lac-tococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconos-toc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus, and Streptococcus [98]. This cheese is flavored with plant extracts, spices, and herbs (e.g., garlic and thyme added after draining and salting) [99]. Jben can be stored for up to 7 days at a cool temperature before being served. This cheese has a pH of 4.1 and is characterized by 62.5% moisture, 16.5% fat, 15.8% crude protein, 4.1% lactose, and 1.04% titratable acidity [98,100]. At an industrial level, the fermentation of pasteurized milk is conducted using rennet and acidifying agents [99].
Chefchaouen is a fresh goat’s cheese from the province of Chefchaouni (Morocco) [77]. The cheese is traditionally made from whole raw milk, rennet, and salt. Prior to consumption, this cheese is washed to remove the excess salt used for preservation. Industrially, milk is pasteurized and fermented using starter cultures and synthetic animal rennet, with the exclusion of salting to produce a French-style cheese. This cheese is still sold in local shops and supermarkets in North Morocco [77].
Karish, kariesh, or kareish is a soft cheese made from skimmed milk (cow or buffalo) or traditional yogurt (e.g., Laban, Rayeb, or Laban khad). Karish is prepared by draining and pressing the skimmed yogurt (Laban) in a tied cheesecloth for 1 (summer season) to 3 (winter season) days. The obtained cheese is cut into pieces, salted, and kept in a cheesecloth for hours for complete whey elimination [34].
Madghissa or Imdeghest is a processed cheese from the Chaouia region (Algeria) [79]. Fresh Klila (a hard cheese) is used as fermentate, mixed with salt and fresh milk and heated until the protein coagulates. After cooling and draining the whey, the cheese obtained is characterized by a salty taste, a yellow color, and an elastic texture [78].
Domiati is a soft ripened or fresh Egyptian cheese [80]. Salted cow or buffalo milk is spontaneously fermented for 2–3 h [34,101]. The obtained curd is molded, drained (12 to 24 h), pressed, and cut into blocks. Fresh Domiati has a pH of 6, which could favor microbial spoilage [80]. For longer preservation, this cheese can be stored in salted whey for 4 to 8 months. For the aging process to take place, cheese is wrapped in wax paper and stored in wooden or steel molds for a year. Aged Domiati cheese has a pungent taste and a light-brown color.
Mish is a soft and ripened Egyptian cheese prepared by covering small pieces of Karish cheese with milk (whole or skimmed) or buttermilk and salt (10%), and it continues to maturate in earthenware pots for 1 year [34]. Pots are closed with mud paste and stored in warm conditions (or it can be exposed to the sun). In some cases, old Mish could be added as a natural starter to accelerate the fermentation. Flavoring ingredients such as food byproducts from sesame oil or butter oil production and/or spices (e.g., red, hot, green, or black peppers, anis, and/or fennel) could be added. Mish is characterized by a strong flavor [102].
Bouhezza is a traditional soft and ripened cheese from Algeria (the region of Chaouia) [103]. Traditionally, this cheese is made from goat’s, sheep’s, or cow’s milk or a mixture of them [78,79]. Before cheese making, buttermilk is kept for 12 to 24 h in a goatskin bag to remove skin features (odor/taste) [103,104]. Then, salt and buttermilk are poured, mixed, and left to maturate for 2 to 3 months, until they have reached the desired texture [79,83]. Bouhezza is acidic (pH 4) and contains 13% protein and 13% fat [83,84]. The main lactic acid bacteria identified in Bouhezza are Enterococcus faecalis, E. faecium, and Lactobacillus paracasei ssp. Paracase [83,104]. Currently, traditional Bouhezza is limited to some regions and commercialized in small local markets.
5.2. Semihard Cheese
Haloumi is a semihard to hard white cheese highly consumed in some Mediterranean countries (Lebanon, Syria, and Jordan). According to the Cypriot standards [85], traditional Halloumi is prepared by the coagulation of a mix of ovine milks with rennet. The obtained curd is pressed and cut into blocks while the whey is heated to eliminate the solubilized proteins. The blocks of curds are cooked in the whey for 1 h then drained, salted, sprinkled with dry mint, pressed, and folded in half. Halloumi is stored in brine (11–12% salt) for almost 40 days before its consumption [105]. Halloumi can be consumed fresh, grilled, or fried. It is characterized by an elastic and compact texture when it is fresh and by good melting and stretching properties when heated. It has a salt content of 3%, fat content of 43% (dry matter), and moisture content of 46% [106,107].
Akkawi is a semihard cheese popular in the Middle East, Persian Gulf, and North African countries [86]. It is produced from the coagulation of bovine or ovine milk or a mix of them, using rennet. The curd obtained is molded and pressed well to drain all the whey, cut into blocks, and pressed for 1 h [81]. Industrially, starter culture and then rennet are added to milk at 35 °C after its pasteurization. Akkawi cheese is preserved in brine (10% salt) at 4 °C. It has a fat content of 21.6%, protein content of 22.5%, and moisture content of 51% [108].
Nabulsi is a semihard cheese high in salt and made traditionally from the coagulation of sheep or goat milk or a mix of them, using rennet. Today, cow milk could also be used. After coagulation, the obtained curd is cut, drained in a cheese cloth, and pressed. The cheese is salted and stored overnight in brine (18 to 21% salt). After 24 h, the cheese is cooked in the boiled brine for 5 to 10 min, cooled, and stored in a brine of 15% salt [108,109]. The shelf life of Nabulsi cheese is about 6 to 12 months [108].
Mshalshe or Shelal cheese is a stretched-curd cheese consumed in Lebanon and Syria. The preparation of Shelal consists of coagulating the milk using rennet, leaving the curd aside to acidify and then stretching and tearing down the curd to form strands for braiding. Mshalshe cheese is characterized by a pH of 5.2 and is traditionally stored in brine [81,82].
Darfieh is a very old semihard and dry Lebanese cheese produced from the spontaneous fermentation of raw goat milk. The curd obtained is stirred, shaped manually into balls, salted, and then sundried. The dried balls are cut and left aside for longer than 12 h, before being conserved in goatskin bag (after being cleaned and salted) for aging [88].
Shanklish is a dry, semihard, and mold-ripened cheese consumed in Lebanon. It is prepared using whole or skimmed traditional yogurt (e.g., Laban) from ewe, goat, or cow milk. Laban is heated until the protein coagulates. Then, the curd (Quareesh el Laban) is drained in a cheesecloth, salted (10%), shaped into balls, and sundried for 3 days [3]. Dried cheese is left to age in earthenware jars for weeks at room temperatures. During aging, yeast and molds (including Debaryomyces hanseni and Penicillum) cover the cheese with green spots, which are sometimes washed at the end of the fermentation process. Aged Shanklish is sprinkled with dry herbs and spices (thyme, chili, and/or cumin) and can be consumed fresh or stored in glass jars and covered with olive oil for 1 to 2 years. Shanklish has a pH around 4 and an astringent and piquant taste. It is high in protein (33%) and low in fat (2%) [3].
5.3. Hard Cheese
Klila is the most popular hard cheese in the Chaouia region (Algeria) [83,89]. Raw milk from goat, sheep, or cow is spontaneously fermented until coagulation and then churned. The buttermilk fraction is heated (up to 75 °C) to favor whey separation from the curd [89,110]. The curd is drained to recover fresh cheese [89]. This cheese can be consumed fresh or dried (sundried), for a shelf-life extension of up to 2 years. This artisanal manufacturing process is still applied in different Algerian regions [110]. Dry Klila can be rehydrated (using milk or water) and mixed with cereal flours [111]. Klila is characterized by high-protein content and low-salt and -fat contents, and it is consequently recommended to people with metabolic diseases such as diabetes or high cholesterol levels [111,112].
Takemmart is an Algerian dry hard cheese with a flattened shape and brown color. It is obtained by the fermentation of milk using the rennet of young goat’s stomach (abomasum). After coagulation, the curd is recovered, kneaded, and placed on a mat covered with fennel for flavoring. The mats are then sundried for 2 days and then kept in the shade until the cheese hardens. The cheese can undergo maturation for 1 month [78].
Aoules or Ioulsân is a dry cheese from Algeria (Ahaggar region) [83]. Aoules is obtained by moderate heating of buttermilk until the protein precipitates (like Klila) [113]. The precipitate is strained in a straw basket, and the curd is kneaded in a small quantity, shaped in cylinders (2 cm thick, 6–8 cm diameter), and then sundried, milled, and stored [114]. In a similar way, Taklilt is a dry Moroccan cheese made primary from camel’s milk. The fermented milk is heated until coagulation and then drained. The curd obtained is shaped into balls and dried in the sun.
Ras or Roumy is an Egyptian aged hard cheese produced by the spontaneous fermentation of cow or buffalo milk or a mix of them. The obtained curd is stirred, heated, salted, molded, and drained in a cheesecloth. A manual (traditionally) or mechanical (industrially) pressure is applied to hasten the whey drainage. The obtained cheese is stored in brine (20% salt) and then drained and dry salted for 2 months on wood shelves [34]. Each side of the cheese wheel is salted separately many times. Ras cheese contains viable probiotic bacteria and has a strong and pungent taste [115,116]. Concerns about the contamination risks of the wet wood shelves (absorbing the cheese water) have been raised and investigated by many authors [116,117].
6. Innovative Strategies for Enhancing the Quality and Safety of Traditional Fermented Dairy Products
6.1. Increasing and Unifying Quality Parameters
Ultrafiltration was used to standardize the fat content (5%) of goat milk–based Halloumi type cheese [118]. This technique increased protein retention, meltability, and free-oil release. When the fat level was increased above 2 g/100 g, organoleptic attributes, especially texture, and overall acceptance of Halloumi cheese were significantly improved [118]. Adding 2% of oats to ultrafiltered low-fat Labneh improved the sensory and nutritional qualities (protein and fiber), increased probiotic bacteria, and extended the product shelf life [119]. Moreover, Labneh products were found free from coliform throughout the storage period.
Lactobacilli have received increasing attention as probiotics and improvers of shelf-life and sensorial properties [120,121,122]. Lactic acid bacteria (Lactobacillus plantarum and Enterococcus faecium) with antimicrobial activity against Staphylococcus aureus were effective in protecting Domiati cheese during 8 weeks of storage (at 6 °C) and improving the organoleptic properties, proteolysis, and lipolysis [123]. Darwish et al. [124] isolated 268 lactic acid bacteria from native Egyptian camel, sheep, goat, buffalo, and cow milks. Among these strains, L. lactis subsp. cremoris (KM746), L. lactis subsp. lactis (KM721), Lb. plantarum (KP623), Lb. delbrueckii subsp. lactis (KP654), and Enterococcus feacium (KT712) were used as starter cultures to enhance the safety and organoleptic properties (taste, spreadability, and the overall texture) of Karish cheese products [125,126]. The addition of probiotic bacteria to Labneh decreased the fungi and psychrophilic bacterial counts [119,127]. The incorporation of encapsulated Lactobacillus acidophilus (5% and 10% of capsules) to butter increased the viability of probiotic micro-organisms without hindering their sensory acceptance [56].
Low fat, reduced fat, and reduced trans-fat are nutrition claims of relevance for health-conscious consumers. Exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk was used for making low-fat Akkawi cheese [128]. The resulting cheese showed improved radical scavenging rates (determined by DPPH and ABTS), ACE-inhibition activity, and antiproliferation activity during the prolonged storage period. It was also reported that the partial substitution of 30% of cow milk with camel milk to make low-fat Akkawi improved the rheological properties during the storage period [129]. Low-fat Halloumi was made by using modified maize starch as a fat replacer [130]. The addition of modified starch to cow milk improved the sensorial properties, yield, and protein content. In addition, it decreased the fermentation time, pH, total solids, fat, ash, and total volatile fatty acids, as well as total bacterial count and lipolytic bacteria [130]. Sesame seeds (0–6%) used as fat replacers increased total solid, fat, and acidity but decreased the protein and ash contents in Labneh [131]. The replacement of 50% of milk fat with wheat germ oil encapsulated in natural casein micelles enhanced the physicochemical and sensorial characteristics of Labneh [132]. The partial substitution of milk fat with jojoba oil reduced the trans-fat and cholesterol contents and improved the sensorial properties of Domiati cheese [133]. The intake of Kishk enriched with a mix of pomegranate seed oil and/or gum Arabic improved plasma high-density lipoprotein cholesterol, blood glucose, plasma dyslipidemia, and urea [134].
The reduced salt/sodium approach is a major trend in the food industry [135,136]. Several traditional cheeses are salted or preserved in brine for flavoring and preservation. This might negatively impact their acceptability by consumers having health issues and requiring a diet low in salt or looking to reduce salt intake as a part of a healthier lifestyle. It was reported that high sodium intake is associated with increased risk of hypertension, kidney stones, and cardiovascular diseases [137,138,139]. Therefore, numerous studies have investigated the replacement of NaCl with KCl in traditional cheeses such as Halloumi and Nabulsi [87,108,128,129]. Overall, the partial substitution of NaCl with KCl did not impact the chemical composition, textural profile, or organoleptic features of fresh cheese during their storage [108]. However, it affected the microbial growth, such as that of Streptococcus thermophilus, Lactobacillus casei, and Lactobacillus acidophilus, and it increased the proteolytic activity during storage [87,108]. The effect of different salting methods (dry and brine) on the chemical and textural characteristics of ovine Halloumi was assessed [105]. It was concluded that dry salting Halloumi cheese for 1 day increased the minerals (calcium, phosphorus, magnesium, and potassium) and reduced the hardness and fracturability compared with those made with brine [105].
There is an increased demand for protein-enriched foods because of their association with several health benefits to the human body. Protein enrichment using whey proteins and micellar casein (1% and 2%) improved the nutritional profile and overall economic efficiency of artisanal Shanklish. Moreover, this addition induced an increase in firmness and cheese yield [3].
The addition of plant ingredients and extracts is not new, but the increased awareness of their health benefits is attracting plenty of attention. Extracts from lemon peel were found to improve Labneh flavor, texture, appearance, and shelf life. This is due to the antioxidant and antimicrobial potential of lemon extracts [140]. Adding moringa at 2% to Halloumi cheese, Labneh, and buttermilk increased the content of iron; protein; calcium; vitamins C, B1, B2, and B3; and protein digestibility and extended their shelf life without impacting the organoleptic properties [141,142,143]. Purslane enriched Kishk improved the mineral and protein contents [144]. A probiotic Labneh was made with broccoli florets paste (up to 5%) and Lactobacillus casei and had improved nutritional properties and shelf life [145]. Adding artichoke powder at 1% to Labneh favored probiotic bacteria growth without hampering the final quality of the product [146]. Cichorium and bromelain extracts enhanced the nutritional and organoleptic properties of Domiati cheese [147]. Sweet pepper extract increased the organoleptic properties of Domiati cheese [127]. Fresh Labneh enriched with antioxidative compounds from pepper extracts encapsulated in alginate beads improved sensorial properties and antioxidant content [148]. Adding Spirulina to Labneh increased the viability of probiotic micro-organisms as well as protein, dietary fiber, antioxidant activity, vitamins (B1, B9, and B12), and minerals (Fe, Zn, K, and Mg) [149]. Essential oils were reported for their bioactive activities, which are beneficial for food preservation [150,151,152]. Adding thyme essential oils (200 mg/kg) to traditional Kishk increased its antioxidant activity (40.69%) compared with the control (31.54%) and decreased the coliform bacteria, yeast, and mold counts [153]. Kishk enriched with Teucrium polium essential oils showed reduced Escherichia coli during the cold storage period [154]. Propolis, ginger, and thyme oils reduced pH and inhibited molds, yeasts, and Escherichia coli while preserving the organoleptic properties of Domiati cheese up to 2 months [155]. The fortified Labneh with different concentrations (0.1, 0.2, and 0.3%) of thyme oil nanoemulsion was stable up to 6 weeks [156]. This is due to the bactericide properties of thyme oil. The addition of cinnamon, eucalyptus, and wheat germ oils (600 µL/kg) to Labneh showed slight changes in quality (pH, acidity, total solids, and dry matter) and extended the shelf life (up to 6 weeks at 5 °C). However, Labneh made with cinnamon and eucalyptus oils were the most accepted [157].
Since 2015, interest in pulses as functional food has increased since the FAO’s declaring it the year of pulses [158]. They were subsequently promoted for their health benefits and suitability for special diets, such as gluten-free and plant-based dairy alternatives [159,160]. Innovative Kishk was prepared by replacing bulgur by 25% and 50% of broken faba bean seeds (byproduct). The revised Kishk made with 50% faba had improved amino acids and an improve mineral profile, without hindering its nutritional, microbiological, and sensory qualities [161]. Sweet lupine powder (2%) improved the nutritional and organoleptic properties of Labneh [162].
6.2. Processing for Enhanced Safety
For commercial dairy products, milk pasteurization is required. Thermal treatments negatively affect the natural microflora of the milk and reduce the organoleptic features of dairy products. However, it was reported that the use of cultured pasteurized milk enhanced the organoleptic properties of ripened Domiati cheese [163]. Adding 0.1% potassium sorbate to cultured pasteurized milk acted as an efficient preservative for cheese during maturation [163]. Combining pasteurization (65 °C, 30 min), the addition of calcium chloride (0.015%), and the pressing (prepress for 20 min at 0.2 MPa and then press for 40 min at 0.6 MPa) improved the yield and quality of Halloumi cheese [164].
The use of a magnetic field, a nonthermal treatment, drastically inhibited the growth of spore-forming bacteria, yeasts, and molds in Halloumi cheese while preserving the traditional flavor and texture [165]. Likewise, using gamma irradiation on Syrian dried Kishk preserved the nutritional composition, texture, and color and reduced pathogens. However, it negatively affected the total acidity, flavor, and taste [166]. Irradiation was also used as a pretreatment of Lactobacillus casei prior to milk fermentation during the process of making Labneh. This photo-dissimulating treatment improved the probiotic effect of bacteria and antioxidant and proteolytic activities and enhanced the flavor, texture, and stability of Labneh during storage [36].
6.3. Functional Edible Coatings and Packaging
Food packaging plays a key role in food protection, nutrient stability, quality preservation, and marketability [167]. Edible coatings and films are gaining a lot of interest because of their dual role in protecting food from the surrounding environment and delivering bioactive compounds and probiotics in food systems [168,169]. Edible film made from mozzarella cheese whey was found effective in preserving the quality of Halloumi cheese at room temperature for 9 days [170]. The microbial species contaminating Halloumi cheese were also significantly reduced using chitosan coating with or without lysozyme or natamycin, and consequently, the shelf life increased by more than 5 days compared with brined cheese (5% and 10% salt). Remarkably, the sensory properties of cheese were not affected by coating [171]. This suggests that coating could replace the use of brine without sacrificing the typical taste and flavor of traditional cheese. Nanotechnology was also used to make films with nanoparticles that interact with the food materials to improve/preserve the organoleptic features, freshness, and stability [172,173]. Fayed et al. [174] showed that wrapping Egyptian Ras cheese with cellulose sheets fortified with natamycin-loaded alginate nanoparticles reduced the growth of A. flavus and aflatoxin without hindering the traditional taste, color, flavor, and overall appearance of Ras cheese [174]. Youssef et al. [165] found that coating mixtures of chitosan/polyvinyl alcohol/glycerol and titanium dioxide nanoparticles protected Ras cheese from mold growth and reduced weight losses during ripening [165]. Modified atmosphere packaging was reported to preserve Domiati cheese’s peculiar volatile profile during storage and prolong the product shelf life compared with other conventional storage methods (passive packaging and vacuum) [80].
Overall, innovative strategies focused on overcoming the main limitations of traditional products: standardization and preservation. These approaches showed different levels of success (Table 4). There is still plenty of room for innovations to find the right balance between the traditional know-how to maintain the peculiar taste and flavor and the use of novel technologies to improve the nutritional profile and productivity.
7. Future Trends of Traditional Fermented Dairy Products
Traditional dairy products are mainly homemade products; only few of them are currently marketed worldwide. The renewed interest in traditional products might be due to consumer demand for diversification. Therefore, there is room to develop new products with improved flavor profiles while relying on traditional products. The use of indigenous microflora and traditional know-how could offer a modern twist to make a new range of products. The recovery, enhancement, and valorization of the microbial ecosystems of old dairy products at risk of extinction could support the diversification. This would attract consumers looking for “authentic” products with a story that they can relate to. Moreover, this could follow what is happening in the market of cereal products, including the renewed interest in ancient grains and flatbreads.
For the wider commercialization of traditional dairy products, the use of innovative technologies and formulations can help in overcoming safety and standardization issues. In terms of safety, raw milk and traditional preparation methods lack quality control and thus do not meet current safety regulations. Milk pasteurization can improve hygienic qualities, yet it negatively impacted the natural microflora presented in raw milk. Still, there are no commercial starters imitating those naturally occurring micro-organisms in traditional fermented products. Given that health-conscious consumers keep looking for low-fat, low-salt, and high-protein products, most of traditional products were preserved using salt and oil drying. Taking advantage of modern technologies would support avoiding salting and oiling. Innovative formulation also suggested new ingredients to reduce salt and fat and increase the protein content to deliver improved nutritional quality while preserving the authentic organoleptic features of traditional products. E-commerce currently contributes into marketing several traditional fermented products, such as Halloumi, Nabulsi, and Labneh, to reach a wider market. Adequate marketing strategies such as storytelling would benefit the spread of Southern Mediterranean products around the world.
8. Conclusions
Traditional fermented products are heritage food with a long history of use. Passing this know-how through generations contributed into the preservation of the organoleptic quality and authenticity of fermented products. Thus, the protection of the gastronomic heritage is deemed necessary. Product registration and certification could contribute to setting strict criteria for the quality and the geographical origin of the product, its production, and its formulation. This would protect and give more value to the traditional fermented dairy products in the global market.
Author Contributions
Conceptualization, M.M. and F.B.; methodology, M.M. and F.B.; investigation, M.M., A.M.G.D., P.M., S.M. and F.B.; writing—original draft preparation, M.M. and F.B.; writing—review and editing, M.M., A.M.G.D., P.M., S.M. and F.B. All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
fermentation-08-00743-t0A1_Table A1 Table A1 Fermented Dairy Products in Middle eastern countries. Fermented Milks Cheese Product Country Product Country Ayran Turkey Akkawi Lebanon, Syria, Palestine, Jordan Doogh Iran Aushari Iraq Goubasha Sudan Baladi Egypt, Syria Kishk Lebanon Chami Syria Laban Zeer Egypt Charkassiyea Syria Laban Kerbah Domiati Egypt Laban Khad Lebanon Halloumi Lebanon, Syria, Palestine, Jordan Labneh Lebanon Jibne Baida Egypt, Lebanon, Syria, Palestine, Jordan Shanina (yogurt beverage) Jordan Jibneh Arabieh Egypt, Lebanon, Syria, Palestine, Jordan Smoked Liban (Sheep) Iraq Jibneh mshallaleh Syria Zabady Egypt Karish Egypt, Lebanon Kenafa Palestine, Egypt Majdoule (Majdouli) Lebanon, Syria Mish Cheese Egypt Nabulsi Cheese Lebanon, Syria, Palestine, Jordan Shanklish (Sürke) Lebanon Shelal Syria Testouri Tunsia Turkomani Syria Tallaga cheese Egypt Kashta (Clotted Cream) Egypt, Lebanon, Syria, Palestine, Jordan
fermentation-08-00743-t0A2_Table A2 Table A2 Fermented Dairy Products in African countries. Types Products Country Description Aguat Ethopia Fermented acidic whey Fermented Milks Amabere amaruranu Southwestern Kenya Fermented Milk with grain-like appearance amacunda Rwanda Buttermilk Arera Ethopia Defatted sour milk or Buttermilk biruni Sudan Aged fermented milk Ergo Zimbabwe, Ethopia Natural fermented milk Fene Mali Fermented camel, goat, or cow milk Gariss Sudan Fermented camel milk Gubasha Sudan Diluted rob Ititu Ethopia Concentrated fermented milk, kindirmu Cameroon Fermented cow milk with thick consistency Ikivuguto Rwanada Fermented cow milk Kule naoto Kenya Fermented milk from Zebu, cow or camel kush-kush Sudan Fermented whey from Rob Kwerionik Eastern Uganda Fermented milk Leben/Lben Tunisia/Morocco Fermented cow milk Mabisi Zambia Traditional fermented milk Madila Botswana Fermented cow and goat milk flavored with fruit juice Mafi or Amasi Namibia, South Africa Traditional fermented milk Masse Mozambique Unsweetened curdled milk Maziwalala or MALA East Africa Traditional fermented milk Mursik Kenya Traditional fermented milk Nunu Nigeria, Ghana Fermented raw cow’s milk Nyamie Ghana Naturally fermented milk Omashikawa Namibia Naturally Fermented Zebu buttermilk Pendidam Cameroon Semi-liquid fermented product from cow’s milk Rob Sudan Fermented cow milk Sethemi South Africa Fermented cow milk Sombana Burkina Faso Fermented cow milk Suusac Kenya, Somalia, Ethiopia, Sudan Fermented camel milk urubu Bururndi Fermented cow milk Pokot ash yogurt (also known as mala ya kienyeji or kamabele kambou) Kenya Cattle breeds and zebu or goat fermented milk Mutandabota Zimbabwe Mixed cow/goat milk with dry baobab fruit pulp (acidic) Amasi or mukaka wakakora or zifa) South Africa, Lesotho, Zimbabwe Fermented yogurt/cottage cheese Cheese Aoules Algeria Dry cheese from goat Ayib Ethopia Cottage cheese bouhezza Algeria Ripened cheese gibna bayda and gibna mudaffara Sudan White cheese klila Algeria Traditional cheese tchoukou Niger Ripened cheese from sheep, goat, and cow Touaregh Mali Hard cheese from made from cow, goat milk, or both Wagasi or Wagashi or Amo or Wara or Gasaru Benin, Ghana Soft cheese Wara Nigeria, Togo Soft cheese Wara-Kishi or warankasi or wagashi or waragashi or woagashi) Nigeria, Benin, and northern Togo Cheese Other dairy products Kimuri Rwanda Butter Nitir kibe Ethopia Ghee
References
1. H. Mohsen; Y. Sacre; L. Hanna-Wakim; M. Hoteit Nutrition and Food Literacy in the MENA Region: A Review to Inform Nutrition Research and Policy Makers., 2022, 19, 10190. DOI: https://doi.org/10.3390/ijerph191610190. PMID: https://www.ncbi.nlm.nih.gov/pubmed/36011837.
2. M.T. Sraïri; M.T. Benyoucef; K. Kraiem The dairy chains in North Africa (Algeria, Morocco and Tunisia): From self sufficiency options to food dependency?., 2013, 2, 162. DOI: https://doi.org/10.1186/2193-1801-2-162. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23667812.
3. L. Nehme; C. Salameh; E. Tabet; M. Nehme; C. Hosri Innovative improvement of Shanklish cheese production in Lebanon., 2018, 90,pp. 23-27. DOI: https://doi.org/10.1016/j.idairyj.2018.10.005.
4. D. Kaaki; O.K. Baghdadi; N. Najm; A. Olabi Preference mapping of commercial Labneh (strained yogurt) products in the Lebanese market., 2012, 95,pp. 521-532. DOI: https://doi.org/10.3168/jds.2011-4409.
5. K. Skowron; A. Budzynska; K. Grudlewska-Buda; N. Wiktorczyk-Kapischke; M. Andrzejewska; E. Walecka-Zacharska; E. Gospodarek-Komkowska Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption., 2022, 13, 679. DOI: https://doi.org/10.3389/fmicb.2022.845166.
6. F. Melini; V. Melini; F. Luziatelli; A.G. Ficca; M. Ruzzi Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review., 2019, 11, 1189. DOI: https://doi.org/10.3390/nu11051189.
7. P. Zinno; F.M. Calabrese; E. Schifano; P. Sorino; R. Di Cagno; M. Gobbetti; E. Parente; M. De Angelis; C. Devirgiliis FDF-DB: A Database of Traditional Fermented Dairy Foods and Their Associated Microbiota., 2022, 14, 4581. DOI: https://doi.org/10.3390/nu14214581.
8. K. El Kinany; M. Deoula; Z. Hatime; B. Bennani; K. El Rhazi Dairy Products and Colorectal Cancer in Middle Eastern and North African Countries: A Systematic Review., 2018, 18, 233. DOI: https://doi.org/10.1186/s12885-018-4139-6.
9. Z. Yu; C. Peng; L.-Y. Kwok; H. Zhang The Bacterial Diversity of Spontaneously Fermented Dairy Products Collected in Northeast Asia., 2021, 10, 2321. DOI: https://doi.org/10.3390/foods10102321.
10. B.J. Muhialdin; V. Filimonau; J.M. Qasem; S.A. Ibrahim; H.L. Algboory Traditional fermented foods and beverages in Iraq and their potential for large-scale commercialization., 2022, 9, 18. DOI: https://doi.org/10.1186/s42779-022-00133-8.
11. A.E. Groenenboom; M.E. Parker; A. De Vries; S. De Groot; S. Zobrist; K. Mansen; P. Milani; R. Kort; E.J. Smid; S.E. Schoustra Bacterial community dynamics in lait caillé, a traditional product of spontaneous fermentation from Senegal., 2019, 14, e0215658. DOI: https://doi.org/10.1371/journal.pone.0215658. PMID: https://www.ncbi.nlm.nih.gov/pubmed/31075124.
12. K.D. Tafa; W.A. Asfaw Role of microbial dynamics in the fermentation process of Ethiopia traditional food: Kocho., 2020, 6, 1840007. DOI: https://doi.org/10.1080/23311932.2020.1840007.
13. S. Schoustra; C. van der Zon; A. Groenenboom; H.B. Moonga; J. Shindano; E.J. Smid; W. Hazeleger Microbiological safety of traditionally processed fermented foods based on raw milk, the case of Mabisi from Zambia., 2022, 171, 113997. DOI: https://doi.org/10.1016/j.lwt.2022.113997.
14. E. Dimidi; S.R. Cox; M. Rossi; K. Whelan Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease., 2019, 11, 1806. DOI: https://doi.org/10.3390/nu11081806. PMID: https://www.ncbi.nlm.nih.gov/pubmed/31387262.
15. O. Samet-Bali; M. Ennouri; A. Dhouib; H. Attia Characterisation of typical Tunisian fermented milk: Leben., 2012, 6,pp. 2169-2175. DOI: https://doi.org/10.5897/AJMR12.065.
16. C. Peng; Z. Sun; Y. Sun; T. Ma; W. Li; H. Zhang Characterization and association of bacterial communities and nonvolatile components in spontaneously fermented cow milk at different geographical distances., 2021, 104,pp. 2594-2605. DOI: https://doi.org/10.3168/jds.2020-19303.
17. L.W. Mwangi; J.W. Matofari; P.S. Muliro; B.O. Bebe Hygienic assessment of spontaneously fermented raw camel milk (suusa) along the informal value chain in Kenya., 2016, 3, 169. DOI: https://doi.org/10.1186/s40550-016-0040-8.
18. V. Capozzi; M. Fragasso; R. Romaniello; C. Berbegal; P. Russo; G. Spano Spontaneous Food Fermentations and Potential Risks for Human Health., 2017, 3, 49. DOI: https://doi.org/10.3390/fermentation3040049.
19. J. García-Díez; C. Saraiva Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety., 2021, 18, 2544. DOI: https://doi.org/10.3390/ijerph18052544.
20. N. Shrivastava; L. Ananthanarayan Use of the backslopping method for accelerated and nutritionally enriched idli fermentation., 2014, 95,pp. 2081-2087. DOI: https://doi.org/10.1002/jsfa.6923.
21. H.B. Moonga; S.E. Schoustra; A.R. Linnemann; E. Kuntashula; J. Shindano; E.J. Smid The art of mabisi production: A traditional fermented milk., 2019, 14, e0213541. DOI: https://doi.org/10.1371/journal.pone.0213541. PMID: https://www.ncbi.nlm.nih.gov/pubmed/30870441.
22. C.U. Wirawati; M.B. Sudarwanto; D.W. Lukman; I. Wientarsih; E.A. Srihanto Diversity of lactic acid bacteria in dadih produced by either back-slopping or spontaneous fermentation from two different regions of West Sumatra, Indonesia., 2019, 12,pp. 823-829. DOI: https://doi.org/10.14202/vetworld.2019.823-829. PMID: https://www.ncbi.nlm.nih.gov/pubmed/31440000.
23. F. Oštaric; N. Antunac; V. Cubric-Curik; I. Curik; S. Juric; S. Kazazic; M. Kiš; M. Vincekovic; N. Zdolec; J. Špoljaric et al. Challenging Sustainable and Innovative Technologies in Cheese Production: A Review., 2022, 10, 529. DOI: https://doi.org/10.3390/pr10030529.
24. EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); C. Lambré; J.M.B. Baviera; C. Bolognesi; P.S. Cocconcelli; R. Crebelli; D.M. Gott; K. Grob; E. Lampi; M. Mengelers et al. Safety evaluation of the food enzyme containing chymosin and pepsin from the abomasum of suckling lambs., 2022, 20, e07005. DOI: https://doi.org/10.2903/j.efsa.2022.7007.
25. X. Zheng; X. Shi; B. Wang A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese., 2021, 12, 703284. DOI: https://doi.org/10.3389/fmicb.2021.703284.
26. A.M. Alhamdan; F.Y. Al Juhaimi; B.H. Hassan; K.A. Ehmed; I.A.M. Ahmed Physicochemical, Microbiological, and Sensorial Quality Attributes of a Fermented Milk Drink (Laban) Fortified with Date Syrup (Dibs) during Cold Storage., 2021, 10, 3157. DOI: https://doi.org/10.3390/foods10123157.
27. O. Samet-Bali; A. Bellila; M.-A. Ayadi; B. Marzouk; H. Attia A comparison of the physicochemical, microbiological and aromatic composition of Traditional and Industrial Leben in Tunisia., 2010, 63,pp. 98-104. DOI: https://doi.org/10.1111/j.1471-0307.2009.00546.x.
28. S. Mattiello; M. Caroprese; C.G. Matteo; R. Fortina; A. Martini; M. Martini; G. Parisi; C. Russo; M. Zecchini; ASPA Commission “Animal Productions in Development Cooperation Projects” Typical dairy products in Africa from local animal resources., 2017, 17,pp. 740-754. DOI: https://doi.org/10.1080/1828051X.2017.1401910.
29. N. Guizani; S. Kasapis; M. Al-Ruzeiki Microbial, chemical and rheological properties of laban (cultured milk)., 2001, 36,pp. 199-205. DOI: https://doi.org/10.1111/j.1365-2621.2001.00451_36_2.x.
30. A. Baroudi; E. Collins Microorganisms and Characteristics of Laban., 1976, 59,pp. 200-202. DOI: https://doi.org/10.3168/jds.S0022-0302(76)84184-7.
31. Z. Mayssoun; N. Nadine Influence of production processes in quality of fermented milk “Laban” in Lebanon., 2010, 2,pp. 381-389. DOI: https://doi.org/10.4236/health.2010.24057.
32. M. Chedid; S.T. Tawk; A. Chalak; S. Karam; S.K. Hamadeh The Lebanese Kishk: A Traditional Dairy Product in a Changing Local Food System., 2018, 7, 16. DOI: https://doi.org/10.5539/jfr.v7n5p16.
33. C. Salameh; J. Scher; J. Petit; C. Gaiani; C. Hosri; S. Banon Physico-chemical and rheological properties of Lebanese kishk powder, a dried fermented milk-cereal mixture., 2016, 292,pp. 307-313. DOI: https://doi.org/10.1016/j.powtec.2016.01.040.
34. S.A. Abou-Donia Origin, History and Manufacturing Process of Egyptian Dairy Products: An Overview., 2008, 5,pp. 51-62.
35. E. Al-Kadamany; I. Toufeili; M. Khattar; Y. Abou-Jawdeh; S. Harakeh; T. Haddad Determination of Shelf Life of Concentrated Yogurt (Labneh) Produced by In-Bag Straining of Set Yogurt using Hazard Analysis., 2002, 85,pp. 1023-1030. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74162-3. PMID: https://www.ncbi.nlm.nih.gov/pubmed/12086035.
36. F.M.F. Elshaghabee; A. El-Hussein; M.S.M. Mohamed Enhancement of Labneh Quality by Laser-Induced Modulation of Lactocaseibacillus casei NRRL B-1922., 2022, 8, 132. DOI: https://doi.org/10.3390/fermentation8030132.
37. G. Benkirane; S. Ananou; E. Dumas; S. Ghnimi; A. Gharsallaoui Moroccan Traditional Fermented Dairy Products: Current Processing Practices and Physicochemical and Microbiological Properties—A Review., 2022, 12, e5636. DOI: https://doi.org/10.55251/jmbfs.5636.
38. M.I. Abou-Dobara; M.M. Ismail; N.M. Refat Preparation of Functional Fermented Dairy Product Containing High Levels of Omega-6, Omega-9, Antioxidants Activity and Probiotic., 2017, 7,pp. 306-318.
39. N. Bendimerad; M. Kihal; F. Berthier Isolation, identification, and technological characterization of wild leuconostocs and lactococci for traditional Raib type milk fermentation., 2012, 92,pp. 249-264. DOI: https://doi.org/10.1007/s13594-012-0063-8.
40. T. Teneva-Angelova; T. Balabanova; P. Boyanova; D. Beshkova Traditional Balkan fermented milk products., 2018, 18,pp. 807-819. DOI: https://doi.org/10.1002/elsc.201800050.
41. H. Debbah; H. Gliguem; A.B. Saleh Effect of Milk Pre-Treatments on Chemical Composition, and Sensory Quality of Traditional Fermented Milk, Rayeb., 2018, 56,pp. 3653-3659.
42. C. Leksir; S. Boudalia; N. Moujahed; M. Chemmam Traditional dairy products in Algeria: Case of Klila cheese., 2019, 6, 7. DOI: https://doi.org/10.1186/s42779-019-0008-4.
43. I.A. Abd El Gawad; A.M. Abd El Fatah; K.A. Al Rubayyi Identification and Characterization of Dominant Lactic Acid Bacteria Isolated from Traditional Rayeb Milk in Egypt., 2010, 6,pp. 728-735.
44. R. Abozead; E. Kheadr; N. Safwat; S. Salam; N. Dabour Technological characterization and molecular identification of defined protective starter cultures for fermentation of traditional Rayeb made from camel’s milk., 2022, 1,pp. 159-170. DOI: https://doi.org/10.1002/fbe2.12020.
45. N. Benkerroum; A. Tamime Technology transfer of some Moroccan traditional dairy products (lben, jben and smen) to small industrial scale., 2004, 21,pp. 399-413. DOI: https://doi.org/10.1016/j.fm.2003.08.006.
46. T. Ghosh; A. Beniwal; A. Semwal; N.K. Navani Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products., 2019, 10, 502. DOI: https://doi.org/10.3389/fmicb.2019.00502.
47. S.T. Sarhir; A. Amanpour; A. Bouseta; S. Selli Key odorants of a Moroccan fermented milk product “Lben” using aroma extract dilution analysis., 2019, 56,pp. 3836-3845. DOI: https://doi.org/10.1007/s13197-019-03854-y.
48. W. Mkadem; K. Belguith; N. Semmar; M.B. Zid; H. ElHatmi; N. Boudhrioua Effect of process parameters on quality attributes of Lben: Correlation between physicochemical and sensory properties., 2021, 155, 112987. DOI: https://doi.org/10.1016/j.lwt.2021.112987.
49. G.I. Chammas; R. Saliba; G. Corrieu; C. Béal Characterisation of lactic acid bacteria isolated from fermented milk “laban”., 2006, 110,pp. 52-61. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.01.043.
50. M. Junaid; S. Inayat; N. Gulzar; A. Khalique; U. Younas; F. Shahzad; Z.M. Iqbal; M. Rajab Effect of different fat levels on physicochemical, sensory and microbiological attributes of fermented laban milk., 2021, 49,pp. 523-529. DOI: https://doi.org/10.1080/09712119.2021.2011297.
51. M.I. Yamani; M.M. Abu-Jaber Yeast Flora of Labaneh Produced by In-Bag Straining of Cow Milk Set Yogurt., 1994, 77,pp. 3558-3564. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77299-4.
52. M.G. Abiad; C. Ajjour; Z. Kassaify; C.F. Iskandar; R. Hamzeh; H.F. Hassan Preliminary physiological, phenotypic, and probiotic characterization of Lactobacillus strains isolated from Anbaris-traditional Lebanese fermented dairy product., 2022, 25,pp. 1266-1278. DOI: https://doi.org/10.1080/10942912.2022.2077363.
53. O. Dimassi; Y. Iskandarani; M. Afram; R. Akiki; M. Rached Production and physicochemical properties of labneh anbaris, a traditional fermented cheese like product, in Lebanon., 2020, 5,pp. 509-516. DOI: https://doi.org/10.22161/ijeab.53.3.
54. N.A. Abou-Zeid Review of Egyptian Cereal-Based Fermented Product (Kishk)., 2016, 4,pp. 600-609.
55. M.M.A. El-Razik; M.F.Y. Hassan; M.G.E. Gadallah Implementation of HACCP Plan for the Production of Egyptian Kishk (A Traditional Fermented Cereal-Milk Mixture)., 2016, 7,pp. 1262-1275. DOI: https://doi.org/10.4236/fns.2016.713116.
56. M.N. Da Silva; B.L. Tagliapietra; F.P. Pivetta; N.S.P.D.S. Richards Nutritional, functional and sensory profile of added butter from Lactobacillus acidophilus encapsulated and hyposodium salt., 2022, 161, 113385. DOI: https://doi.org/10.1016/j.lwt.2022.113385.
57. O. Samet-Bali; M. Ayadi; H. Attia Traditional Tunisian butter: Physicochemical and microbial characteristics and storage stability of the oil fraction., 2009, 42,pp. 899-905. DOI: https://doi.org/10.1016/j.lwt.2008.11.007.
58. D. Tahmas-Kahyaoglu; S. Cakmakci; A.A. Hayaloglu Changes during storage in volatile compounds of butter produced using cow, sheep or goat’s milk., 2022, 211, 106691. DOI: https://doi.org/10.1016/j.smallrumres.2022.106691.
59. Y. Abid; S. Azabou; M. Jridi; I. Khemakhem; M. Bouaziz; H. Attia Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products., 2017, 233,pp. 476-482. DOI: https://doi.org/10.1016/j.foodchem.2017.04.125.
60. K. Adamczewski; B. Staniewski; J. Kowalik The applicability of predictive microbiology tools for analysing Listeria monocytogenes contamination in butter produced by the traditional batch churning method., 2022, 132, 105400. DOI: https://doi.org/10.1016/j.idairyj.2022.105400.
61. C. Hurtaud; F. Faucon; S. Couvreur; J.-L. Peyraud Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties., 2010, 93,pp. 1429-1443. DOI: https://doi.org/10.3168/jds.2009-2839. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20338420.
62. A. Labtar; C. Delorme; P. Renault Occurrence, isolation and DNA identification of Streptococcus thermophilus involved in Algerian traditional butter ‘Smen’., 2011, 10,pp. 17251-17257. DOI: https://doi.org/10.5897/ajb11.2462.
63. C. Iradukunda; W.M.W. Aida; A.T. Ouafi; Y. Barkouch; A. Boussaid Aroma profile of a traditionally fermented butter (smen)., 2018, 85,pp. 114-120. DOI: https://doi.org/10.1017/S0022029917000796. PMID: https://www.ncbi.nlm.nih.gov/pubmed/29468995.
64. T. Idoui; N.-E. Karam Lactic acid bacteria from Jijel’s traditional butter: Isolation, identification and major technological traits., 2008, 59,pp. 361-367. DOI: https://doi.org/10.3989/gya.2008.v59.i4.530.
65. R. Boussekine; F. Bekhouche; S. Debaets; A. Thierry; M.B. Maillard; H. Falentin; A. Pawtowski; M. Barkat; M. Coton; J. Mounier Deciphering the Microbiota and Volatile Profiles of Algerian Smen, a Traditional Fermented Butter., 2022, 10, 736. DOI: https://doi.org/10.3390/microorganisms10040736.
66. G. Bettache; A. Fatma; H. Miloud; K. Mebrouk Isolation and Identification of Lactic Acid Bacteria from Dhan, A Traditional Butter and Their Major Technological Traits., 2012, 17,pp. 480-488. DOI: https://doi.org/10.5829/idosi.wjdfs.2012.7.1.639.
67. S.T. Sarhir; A. Amanpour; A. Bouseta; S. Selli Fingerprint of aroma-active compounds and odor activity values in a traditional Moroccan fermented butter “Smen” using GC–MS–Olfactometry., 2020, 96, 103761. DOI: https://doi.org/10.1016/j.jfca.2020.103761.
68. I. Fguiri; M. Ziadi; M. Atigui; N. Ayeb; S. Arroum; M. Assadi; T. Khorchani Isolation and characterisation of lactic acid bacteria strains from raw camel milk for potential use in the production of fermented Tunisian dairy products., 2016, 69,pp. 103-113. DOI: https://doi.org/10.1111/1471-0307.12226.
69. R. Triqui; H. Guth Potent odorants in “Smen”, a traditional fermented butter product., 2001, 212,pp. 292-295. DOI: https://doi.org/10.1007/s002170000257.
70. R. Boussekine; R. Merabti; M. Barkat; F.-Z. Becila; N. Belhoula; J. Mounier; F. Bekhouche Traditional Fermented Butter Smen/Dhan: Current Knowledge, Production and Consumption in Algeria., 2020, 9, 71. DOI: https://doi.org/10.5539/jfr.v9n4p71.
71. O. Özkanli; A. Kaya Storage stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk., 2007, 100,pp. 1026-1031. DOI: https://doi.org/10.1016/j.foodchem.2005.10.052.
72. M. Derouiche; M. Zidoune Characterization of a Traditional Michouna Cheese from the Region of Tébessa, Algeria., 2015, 27, 229.
73. I. Mahmoudi; A. Telmoudi; M. Chouaibi; M. Hassouna In vitro assessment of health-promoting benefits of sheep ‘Testouri’ cheese., 2021, 50,pp. 54-64. DOI: https://doi.org/10.1556/066.2020.00125.
74. O. Baccouri; A.M. Boukerb; F. Nilly; M. Cambronel; I. Smaali; M.G.J. Feuilloley; F. Abidi; N. Connil Draft Genome Sequence of Enterococcus faecalis Strain OB15, a Probiotic Strain Recently Isolated from Tunisian Rigouta Cheese., 2020, 9, e01433-19. DOI: https://doi.org/10.1128/MRA.01433-19.
75. P.F. Fox; T.P. Guinee; T.M. Cogan; P.L.H. McSweeney Processed Cheese and Substitute/Imitation Cheese Products., Springer: Boston, MA, USA, 2017,pp. 589-627.
76. N. Benkerroum; H. Oubel; M. Zahar; S. Dlia; A. Filali-Maltouf Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan jben., 2000, 89,pp. 960-968. DOI: https://doi.org/10.1046/j.1365-2672.2000.01199.x.
77. M. Mariani; F. Casabianca; C. Cerdan; I. Peri Protecting Food Cultural Biodiversity: From Theory to Practice. Challenging the Geographical Indications and the Slow Food Models., 2021, 13, 5265. DOI: https://doi.org/10.3390/su13095265.
78. O.A. Zitoun; L. Benatallah; E. Ghennam; M.N. Zidoune Manufacture and Characteristics of the Traditional Algerian Ripened Bouhezza Cheese., 2011, 9,pp. 96-100.
79. H. Medjoudj; L. Aouar; M.N. Zidoune; A.A. Hayaloglu Proteolysis, microbiology, volatiles and sensory evaluation of Algerian traditional cheese Bouhezza made using goat’s raw milk., 2017, 20,pp. S3246-S3265. DOI: https://doi.org/10.1080/10942912.2017.1375515.
80. A.A. Atallah; E.A. Ismail; H.M. Yehia; M.F. Elkhadragy; E.-S.G. Khater Proteolytic Development and Volatile Compounds Profile of Domiati Cheese under Modified Atmosphere Packaging., 2022, 8, 358. DOI: https://doi.org/10.3390/fermentation8080358.
81. D.A. Jaoude; A. Olabi; N.E.O. Najm; A. Malek; C. Saadeh; E. Baydoun; I. Toufeili Chemical composition, mineral content and cholesterol levels of some regular and reduced-fat white brined cheeses and strained yogurt (Labneh)., 2010, 90,pp. 699-706. DOI: https://doi.org/10.1051/dst/2010026.
82. I. Toufeili; B. Özer Brined Cheeses from the Middle East and Turkey., Blackwell Science Ltd.: Hoboken, NJ, USA, 2007,pp. 188-210.
83. S. Boudalia; A. Boudebbouz; Y. Gueroui; A. Bousbia; M. Benada; C. Leksir; Z. Boukaabene; A. Saihi; H. Touaimia; A. Aït-Kaddour et al. Characterization of traditional Algerian cheese “Bouhezza” prepared with raw cow, goat and sheep milks., 2020, 40,pp. 528-537. DOI: https://doi.org/10.1590/fst.35919.
84. H. Medjoudj; L. Aouar; M. Derouiche; Y. Choiset; T. Haertlé; J.-M. Chobert; M.N. Zidoune; A.A. Hayaloglu Physicochemical, microbiological characterization and proteolysis of Algerian traditionalBouhezzacheese prepared from goat’s raw milk., 2019, 53,pp. 905-921. DOI: https://doi.org/10.1080/00032719.2019.1685531.
85. P. Papademas; R.K. Robinson A comparison of the chemical, microbiological and sensory characteristics of bovine and ovine Halloumi cheese., 2000, 10,pp. 761-768. DOI: https://doi.org/10.1016/S0958-6946(00)00110-2.
86. A. Tamime, Blackwell Publishing: Oxford, UK, 2006,
87. M. Ayyash; N. Shah The effect of substituting NaCl with KCl on Nabulsi cheese: Chemical composition, total viable count, and texture profile., 2011, 94,pp. 2741-2751. DOI: https://doi.org/10.3168/jds.2010-3976.
88. M. Serhan; M. Linder; C. Hosri; J. Fanni Changes in proteolysis and volatile fraction during ripening of Darfiyeh, a Lebanese artisanal raw goat’s milk cheese., 2010, 90,pp. 75-82. DOI: https://doi.org/10.1016/j.smallrumres.2010.01.008.
89. R.N. Benamara; L. Gemelas; K. Ibri; B. Moussa-Boudjemaa; Y. Demarigny Sensory, microbiological and physico-chemical characterization of Klila, a traditional cheese made in the south-west of Algeria., 2016, 10,pp. 1728-1738. DOI: https://doi.org/10.5897/AJMR2016.8264.
90. H. Ghamgui; F. Bouaziz; F. Frikha; F. Châari; S. Ellouze-Chaâbouni Production and characterization of soft Sardaigne-type cheese by using almond gum as a functional additive., 2021, 9,pp. 2032-2041. DOI: https://doi.org/10.1002/fsn3.2170.
91. O. Baccouri; A.M. Boukerb; L.B. Farhat; A. Zébré; K. Zimmermann; E. Domann; M. Cambronel; M. Barreau; O. Maillot; I. Rincé et al. Probiotic Potential and Safety Evaluation of Enterococcus faecalis OB14 and OB15, Isolated From Traditional Tunisian Testouri Cheese and Rigouta, Using Physiological and Genomic Analysis., 2019, 10, 881. DOI: https://doi.org/10.3389/fmicb.2019.00881.
92. N. Benkerroum Traditional Fermented Foods of North African Countries: Technology and Food Safety Challenges With Regard to Microbiological Risks., 2013, 12,pp. 54-89. DOI: https://doi.org/10.1111/j.1541-4337.2012.00215.x.
93. E.F. Ricciardi; V. Lacivita; A. Conte; E. Chiaravalle; A.V. Zambrini; M.A. Del Nobile X-ray irradiation as a valid technique to prolong food shelf life: The case of ricotta cheese., 2019, 99, 104547. DOI: https://doi.org/10.1016/j.idairyj.2019.104547.
94. E.F. Ricciardi; S. Pedros-Garrido; K. Papoutsis; J.G. Lyng; A. Conte; M.A. Del Nobile Novel Technologies for Preserving Ricotta Cheese: Effects of Ultraviolet and Near-Ultraviolet–Visible Light., 2020, 9, 580. DOI: https://doi.org/10.3390/foods9050580. PMID: https://www.ncbi.nlm.nih.gov/pubmed/32380636.
95. J.A. Lucey Acid- and Acid/Heat Coagulated Cheese., 3rd ed. edition; Academic Press: Cambridge, MA, USA, 2022,pp. 6-14. DOI: https://doi.org/10.1016/b978-0-12-818766-1.00073-8.
96. C. Pala; C. Scarano; M. Venusti; D. Sardo; D. Casti; F. Cossu; S. Lamon; V. Spanu; M. Ibba; M. Marras et al. Shelf life evaluation of ricotta fresca sheep cheese in modified atmosphere packaging., 2016, 5,pp. 134-139. DOI: https://doi.org/10.4081/ijfs.2016.5502. PMID: https://www.ncbi.nlm.nih.gov/pubmed/27853705.
97. D. Tadjine; S. Boudalia; A. Bousbia; Y. Gueroui; G. Symeon; L.M. Boudechiche; A. Tadjine; M. Chemmam Milk heat treatment affects microbial characteristics of cows’ and goats’ “Jben” traditional fresh cheeses., 2021, 41,pp. 136-143. DOI: https://doi.org/10.1590/fst.00620.
98. M. Ouadghiri; M. Amar; M. Vancanneyt; J. Swings Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben)., 2005, 251,pp. 267-271. DOI: https://doi.org/10.1016/j.femsle.2005.08.012. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16168579.
99. W. Benheddi; A. Hellal Technological characterization and sensory evaluation of a traditional Algerian fresh cheese clotted with Cynara cardunculus L. flowers and lactic acid bacteria., 2019, 56,pp. 3431-3438. DOI: https://doi.org/10.1007/s13197-019-03828-0.
100. A. Hayaloglu Chapter 39—Cheese Varieties Ripened under Brine., Academic Press: Cambridge, MA, USA, 2017,pp. 997-1040.
101. A. Hammam; M.S. Elfaruk; M.E. Ahmed; V. Sunkesula Characteristics and Technological Aspects of the Egyptian Cheeses., 2020, 9,pp. 3338-3354. DOI: https://doi.org/10.20546/ijcmas.2020.906.397.
102. R.A.E.M. Abd El; M.E.S.E.S. Ali; A. Abdelkhalek Correspondence Prevalence and Characterization of Some Pathogenic Bacteria in Fermented Milk Products and Mish Cheese in Dakahalia Governorate, Egypt., 2022, 12,pp. 446-450.
103. O.A. Zitoun; C. Pediliggieri; L. Benatallah; S. Lortal; G. Licitra; M.N. Zidoune; S. Carpino Bouhezza, a Traditional Algerian Raw Milk Cheese, Made and Ripened in Goatskin Bags., 2012, 10,pp. 289-295.
104. A. Senoussi; T. Rapisarda; I. Schadt; H. Chenchouni; Z. Saoudi; S. Senoussi; O.A. Zitoun; M.N. Zidoune; S. Carpino Formation and dynamics of aroma compounds during manufacturing-ripening of Bouhezza goat cheese., 2022, 129, 105349. DOI: https://doi.org/10.1016/j.idairyj.2022.105349.
105. S. Kaminarides; E. Moschopoulou; F. Karali Influence of Salting Method on the Chemical and Texture Characteristics of Ovine Halloumi Cheese., 2019, 8, 232. DOI: https://doi.org/10.3390/foods8070232.
106. L. Lteif; A. Olabi; O.K. Baghdadi; I. Toufeili The characterization of the physicochemical and sensory properties of full-fat, reduced-fat, and low-fat ovine and bovine Halloumi., 2009, 92,pp. 4135-4145. DOI: https://doi.org/10.3168/jds.2009-2070. PMID: https://www.ncbi.nlm.nih.gov/pubmed/19700674.
107. P. Papademas; R.K. Robinson Halloumi cheese: The product and its characteristics., 1998, 51,pp. 98-103. DOI: https://doi.org/10.1111/j.1471-0307.1998.tb02646.x.
108. M. Ayyash; F. Sherkat; N. Shah The effect of NaCl substitution with KCl on Akawi cheese: Chemical composition, proteolysis, angiotensin-converting enzyme-inhibitory activity, probiotic survival, texture profile, and sensory properties., 2012, 95,pp. 4747-4759. DOI: https://doi.org/10.3168/jds.2011-4940. PMID: https://www.ncbi.nlm.nih.gov/pubmed/22916878.
109. K.M. Al-Ismail; M.A. Humied Effect of Processing and Storage of Brined White (Nabulsi) Cheese on Fat and Cholesterol Oxidation., 2003, 83,pp. 39-43. DOI: https://doi.org/10.1002/jsfa.1278.
110. K. Benlahcen; A.E. Mahamedi; Y. Djellid; I.F. Sadeki; M. Kihal Microbiological Characterization of Algerian Traditional Cheese “Klila”., 2017, 6,pp. 1-9.
111. R.N. Benamara; M. Benahmed; K. Ibri; B.M. Boudjemaa; Y. Demarigny Algerian extra hard cheese of Klila: A review on the production method, and microbial, organoleptic, and nutritional properties., 2022, 9, 41. DOI: https://doi.org/10.1186/s42779-022-00157-0.
112. C. Leksir; M. Chemmam Contribution on the Characterization of Klila, a Traditional Cheese in East of Algeria., 2015, 27, 83.
113. F. Nyamakwere; G. Esposito; K. Dzama; E. Raffrenato A review of artisanal cheese making: An African perspective., 2021, 51,pp. 296-309. DOI: https://doi.org/10.4314/sajas.v51i3.3.
114. S. Mattiello; M. Caroprese; G.M. Crovetto; R. Fortina; A. Martini; M. Martini; G. Parisi; C. Russo; C. Severini; M. Zecchini et al. Typical edible non-dairy animal products in Africa from local animal resources., 2017, 17,pp. 202-217. DOI: https://doi.org/10.1080/1828051X.2017.1348915.
115. M.A. Abd-Elmonem; A. Tammam; W.I. El-Desoki; A.-N.A. Zohri; A.H.M. Moneeb Improving The Properties of the Egyptian Ras Cheese with Adding Some Probiotic Lactobacillus spp.., 2022, 53,pp. 12-30. DOI: https://doi.org/10.21608/ajas.2022.115878.1084.
116. H.M. El-Fadaly; S.M. El-Kadi; M.N. Hamad; A.A. Habib Isolation and identification of Egyptian Ras cheese (Romy) contaminating fungi during ripening period., 2015, 5,pp. 1-10. DOI: https://doi.org/10.5923/j.microbiology.20150501.01.
117. M. Elramly; A. Leboudy; M. Ansary Mycological Evaluation of Egyptian Ras Cheese with Special Reference to Mycotoxins., 2019, 63, 33. DOI: https://doi.org/10.5455/ajvs.58688.
118. G.K. Deshwal; R. Ameta; H. Sharma; A.K. Singh; N.R. Panjagari; B. Baria Effect of ultrafiltration and fat content on chemical, functional, textural and sensory characteristics of goat milk-based Halloumi type cheese., 2020, 126, 109341. DOI: https://doi.org/10.1016/j.lwt.2020.109341.
119. M. Khider; N.M. Nasr; K.M. Atallah; W.A. Metry Functional UF-low and full-fat Labneh supplemented with Oats (Avena sativa L.) powder and probiotic bacteria., 2022,pp. 1-12. DOI: https://doi.org/10.1007/s43994-022-00003-8.
120. M. Kumari; H.K. Patel; A. Kokkiligadda; B. Bhushan; S. Tomar Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties., 2022, 154, 112827. DOI: https://doi.org/10.1016/j.lwt.2021.112827.
121. R. Francavilla; M. De Angelis; C.G. Rizzello; N. Cavallo; F.D. Bello; M. Gobbetti Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion., 2017, 83, e00376-17. DOI: https://doi.org/10.1128/AEM.00376-17.
122. M. Mefleh; C. Summo; M. Faccia; F. Caponio; A. Pasqualone Legume-Based Dairy Substitutes: From Traditional Food to Recent Findings., Elsevier: Amsterdam, The Netherlands, 2023, DOI: https://doi.org/10.1016/b978-0-12-823960-5.00061-5.
123. N. Khalil; E. Kheadr; M. El-Ziney; N. Dabour Lactobacillus plantarum protective cultures to improve safety and quality of wheyless Domiati-like cheese., 2022, 46, e16416. DOI: https://doi.org/10.1111/jfpp.16416.
124. A.M.G. Darwish; M.G. Allam; E.H. Ayad Physicochemical profile and Lactic Acid Bacteria genera inhabit Egyptian raw camel, sheep, goat, buffalo and cow., 2018, 3,pp. 12-24. DOI: https://doi.org/10.21608/mb.2018.4276.1001.
125. M.G. Allam; A.M. Darwish; E.H. Ayad; E.S. Shokery; S.M. Darwish Lactococcus species for conventional Karish cheese conservation., 2017, 79,pp. 625-631. DOI: https://doi.org/10.1016/j.lwt.2016.11.032.
126. A. Darwish; M. Allam; E. Ayad; E. Shokery; R. Mashaly; S. Darwish In vivo Evaluation of Safety and Probiotic Traits of Isolated Enterococcus feacium Strain KT712., 2016, 11,pp. 169-177. DOI: https://doi.org/10.3923/jm.2016.169.177.
127. K.M.K. Kamaly; K.M.K. Kebary; R.M. Badawi; A.M.A. Gaafar Characteristics of green pepper-treated probiotic domiati cheese., 2018, 3,pp. 39-49. DOI: https://doi.org/10.21608/mjfds.2018.175626.
128. A. AL Dhaheri; R. Al-Hemeiri; J. Kizhakkayil; A. Al-Nabulsi; A. Abushelaibi; N.P. Shah; M. Ayyash Health-promoting benefits of low-fat akawi cheese made by exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk., 2017, 100,pp. 7771-7779. DOI: https://doi.org/10.3168/jds.2017-12761. PMID: https://www.ncbi.nlm.nih.gov/pubmed/28755944.
129. A. Abdalla; B. Abu-Jdayil; S. AlMadhani; F. Hamed; A. Kamal-Eldin; T. Huppertz; M. Ayyash Low-fat akawi cheese made from bovine-camel milk blends: Rheological properties and microstructural characteristics., 2022, 105,pp. 4843-4856. DOI: https://doi.org/10.3168/jds.2021-21367.
130. M. Basiony; R. Hassabo Composition and Quality of Low-Fat Halloumi Cheese Made Using Modified Starch as a Fat Replacer., 2021, 74, 2100211. DOI: https://doi.org/10.1002/star.202100211.
131. A.A. Aly; M.M. Refaey; A.M. Hameed; A. Sayqal; S.A. Abdella; A.S. Mohamed; M.A.A. Hassan; H.A. Ismail Effect of addition sesame seeds powder with different ratio on microstructural and some properties of low fat Labneh., 2020, 13,pp. 7572-7582. DOI: https://doi.org/10.1016/j.arabjc.2020.08.032.
132. T.N. Solim; A.F. Far; H. Abdel-Hady; M. El-Hossien Preparation and Properties Nano-encapsulated Wheat Germ Oil and its Use in the Manufacture of Functional Labneh Cheese., 2019, 22,pp. 318-326. DOI: https://doi.org/10.3923/pjbs.2019.318.326.
133. R.F. Ali; A.M. El-Anany; H.M. Mousa The effect of partially or totally replacing milk fat by jojoba oil in Domiati cheese production on some nutritional and quality properties., 2020, 51,pp. 191-204. DOI: https://doi.org/10.1108/NFS-03-2020-0077.
134. S.Y. Al-Okbi; S.A. El Ghani; H. Elbakry; H. Mabrok; S. Nasr; H. Desouky; K. Mahmoud Kishk Sa'eedi as a potential functional food for management of metabolic syndrome: A study of the possible interaction with pomegranate seed oil and/or gum Arabic., 2021, 10,pp. 319-330. DOI: https://doi.org/10.34172/jhp.2021.37.
135. L. Kloss; J.D. Meyer; L. Graeve; W. Vetter Sodium intake and its reduction by food reformulation in the European Union—A review., 2015, 1,pp. 9-19. DOI: https://doi.org/10.1016/j.nfs.2015.03.001.
136. M. Gobbetti; M. De Angelis; R. Di Cagno; M. Calasso; G. Archetti; C.G. Rizzello Novel insights on the functional/nutritional features of the sourdough fermentation., 2018, 302,pp. 103-113. DOI: https://doi.org/10.1016/j.ijfoodmicro.2018.05.018.
137. J. Webster; K. Trieu; E. Dunford; C. Hawkes Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods., 2014, 6,pp. 3274-3287. DOI: https://doi.org/10.3390/nu6083274. PMID: https://www.ncbi.nlm.nih.gov/pubmed/25195640.
138. N. Nghiem; T. Blakely; L.J. Cobiac; C.L. Cleghorn; N. Wilson The health gains and cost savings of dietary salt reduction interventions, with equity and age distributional aspects., 2016, 16, 423. DOI: https://doi.org/10.1186/s12889-016-3102-1.
139. D. Komnenov; P.E. Levanovich; N.F. Rossi Hypertension Associated with Fructose and High Salt: Renal and Sympathetic Mechanisms., 2019, 11, 569. DOI: https://doi.org/10.3390/nu11030569. PMID: https://www.ncbi.nlm.nih.gov/pubmed/30866441.
140. E.A. El-Kholany; A.M. El-Deeb; D.M. Elsheikh Impact of lemon peel extract utilization on the biological values of Labneh during storage., 2022, 100,pp. 555-569. DOI: https://doi.org/10.21608/ejar.2022.132702.1240.
141. N.B. Elgaml; M.A. Moussa; A.E. Saleh Impact of adding moringa oleifera on the quality and properties of halloumi cheese., 2018, 96,pp. 687-701. DOI: https://doi.org/10.21608/ejar.2018.136146.
142. M. Abdullahi; F. Zainab; M. Pedavoah; U. Bashir; U. Sumayya; A. Ibrahim Evaluating the suitability of Adansonia digitata fruit pulp for the production of yoghurt., 2014, 8, 508. DOI: https://doi.org/10.4314/ijbcs.v8i2.10.
143. M. Nadeem; A. Javid; M. Abdullah; A.M. Arif; T. Mahmood Improving Nutritional Value of Butter Milk by Blending with Dry Leaves of Moringa oleifera., 2012, 11,pp. 812-816. DOI: https://doi.org/10.3923/pjn.2012.812.816.
144. K.H. Salman; E.A. Mahmoud; A.A. Abd-Alla Preparing Untraditional Kishk Formula with Purslane as Natural Source of Bioactive Compounds., 2020, 11,pp. 299-305. DOI: https://doi.org/10.21608/jfds.2020.126744.
145. H.S.A. El-Montaleb; K.A.-E. Abbas; M.A. Mwaheb; S.M. Hamdy Production and characteristic quality of probiotic Labneh cheese supplemented with broccoli florets., 2021, 124,pp. 3666-3679. DOI: https://doi.org/10.1108/BFJ-05-2021-0554.
146. A.S.T. Bakr; W.F. Elkot Impact of Using Jerusalem Artichoke Tubers Powder and Probiotic Strains on some Properties of Labneh., 2021, 3,pp. 1-7. DOI: https://doi.org/10.47363/JFTNS/2021(3)115.
147. A.M. Abdeldaiem Improvement of Domiati cheese properties using cichorium and bromelain extracts., 2022, DOI: https://doi.org/10.21608/ejds.2022.253526.
148. T. Balabanova; N. Petkova; M. Ivanova; N. Panayotov Design of Labneh cheese fortified with alginate-encapsulated pepper (Capsicum annuum) extracts., 2020, 32,pp. 559-566. DOI: https://doi.org/10.9755/ejfa.2020.v32.i8.2132.
149. W.M.A. Ebid; G.S. Ali; N.A.H. Elewa Impact of Spirulina platensis on physicochemical, antioxidant, microbiological and sensory properties of functional labneh., 2022, 2, 29. DOI: https://doi.org/10.1007/s44187-022-00031-7.
150. L. Marchetti; S.C. Andrés; A.N. Califano Physicochemical, Microbiological and Oxidative Changes During Refrigerated Storage of n-3 PUFA Enriched Cooked Meat Sausages with Partial NaCl Substitution., 2016, 41, e12920. DOI: https://doi.org/10.1111/jfpp.12920.
151. Y. Hao; Y. Chu; M. Zhang; W. Shi; Y. Chen; D. Li; L. Li Preparation of functional degradable antibacterial film and application in fresh-keeping of grass carp., 2022, 9, 100341. DOI: https://doi.org/10.1016/j.jafr.2022.100341.
152. D. Sharma; D. Dhanjal; B. Mittal Development of Edible Biofilm Containing Cinnamon to Control Food-Borne Pathogen., 2017, 7,pp. 160-164. DOI: https://doi.org/10.7324/JAPS.2017.70122.
153. E.A.M.K.H. Salman Utilization of Cinnamon, Clove and Thyme Essential Oils as Antimicrobial and Bioactive Compounds in Kishk Manufacturing., 2020, 7,pp. 43-54. DOI: https://doi.org/10.21608/scuj.2020.130639.
154. N. Sadrizadeh; S. Khezri; P. Dehghan; R. Mahmoudi Antibacterial Effect of Teucrium polium Essential Oil and Lactobacillus casei Probiotic on Escherichia coli O157:H7 in Kishk., 2018, 5,pp. 131-140. DOI: https://doi.org/10.22037/AFB.V5I3.19166.
155. K.A.H. Saleh; O.S.F. Khalil Extension Shelf Life of Domiati Cheese Made by Using Some of Natural Preservatives., 2019, 50, 33368. DOI: https://doi.org/10.21608/ajas.2019.33368.
156. S.M. El-Sayed; H.S. El-Sayed Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation., 2020, 10,pp. 1029-1041. DOI: https://doi.org/10.1016/j.jmrt.2020.12.073.
157. F. Al-Rimawi; M. Alayoubi; C. Elama; M. Jazzar; A. Çakici Use of cinnamon, wheat germ, and eucalyptus oils to improve quality and shelf life of concentrated yogurt (Labneh)., 2020, 6, 1807810. DOI: https://doi.org/10.1080/23311932.2020.1807810.
158. F. Boukid; E. Zannini; E. Carini; E. Vittadini Pulses for bread fortification: A necessity or a choice?., 2019, 88,pp. 416-428. DOI: https://doi.org/10.1016/j.tifs.2019.04.007.
159. M. Mefleh; M. Faccia; G. Natrella; D. De Angelis; A. Pasqualone; F. Caponio; C. Summo Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters., 2022, 11, 3578. DOI: https://doi.org/10.3390/foods11223578. PMID: https://www.ncbi.nlm.nih.gov/pubmed/36429170.
160. M. Mefleh; A. Pasqualone; F. Caponio; D. de Angelis; G. Natrella; C. Summo; M. Faccia Spreadable Plant-Based Cheese Analogue with Dry-Fractioned Pea Protein and Inulin–Olive Oil Emulsion-Filled Gel., 2022, 102,pp. 5478-5487. DOI: https://doi.org/10.1002/jsfa.11902.
161. H. Ferweez; F. Ibrahim; A. Metwalli; M. Mohran; A.A. Tammam; H. Ismail; A. Farag Increasing of Nutritional and Added Values of Functional Kishk by Replacing Burghul with Broken Seeds of Faba Bean (Vicia faba L.) as Innovative Dairy Product., 2021, 1,pp. 76-88. DOI: https://doi.org/10.21608/nvjas.2021.105472.1018.
162. W.F. Elkot; O.S.F. Khalil Physicochemical, textural, microbiological and sensory properties of low-fat bio-Labneh using sweet lupine powder and Bifidobacterium longum ATCC 15707., 2022, 46, e16311. DOI: https://doi.org/10.1111/jfpp.16311.
163. S.S. Awaad; A.A. Moawad; S. Sallam; A.B. Abdel-Salam Effect of Some Improving Processing Techniques on the Microbiological and Sensory Quality of Domiati Cheese., 2022, DOI: https://doi.org/10.21608/ejchem.2022.152514.6606.
164. S. Zhao; Y. Leng; G. Xiao; S. Jiang; Q. Xie; L. Zhang; X. Han Effects of Pasteurization Method, Calcium Chloride and Squeeze Pressure on the Yield and Quality of Bovine Halloumi Cheese., 2019, 40,pp. 32-38.
165. M. Zielinski; M. Zielinska; A. Cydzik-Kwiatkowska; P. Rusanowska; M. Debowski Effect of static magnetic field on microbial community during anaerobic digestion., 2020, 323, 124600. DOI: https://doi.org/10.1016/j.biortech.2020.124600.
166. M. Al-Bachir Physicochemical Properties of Syrian Dried Kishk as Affected by Gamma Irradiation., 2022, 18,pp. 32-41.
167. M.A. Pascall; K. DeAngelo; J. Richards; M.B. Arensberg Role and Importance of Functional Food Packaging in Specialized Products for Vulnerable Populations: Implications for Innovation and Policy Development for Sustainability., 2022, 11, 3043. DOI: https://doi.org/10.3390/foods11193043. PMID: https://www.ncbi.nlm.nih.gov/pubmed/36230119.
168. K. Krasniewska; S. Galus; M. Gniewosz Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review., 2020, 21, 698. DOI: https://doi.org/10.3390/ijms21030698. PMID: https://www.ncbi.nlm.nih.gov/pubmed/31973105.
169. Y. Fan; J. Yang; A. Duan; X. Li Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package., 2021, 181,pp. 1003-1009. DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.111. PMID: https://www.ncbi.nlm.nih.gov/pubmed/33892026.
170. H.K. Hendrasty; W.T. Rahayu; F. Marsudi Effectiveness of Edible Film from Mozarella Cheese Whey on Physical and Chemical Properties of “Halloumi” Cheese and “Mozarella” Cheese Stored at Room Temperature., 2022, 3,pp. 229-237.
171. G.F. Mehyar; A.A. Al Nabulsi; M. Saleh; A.N. Olaimat; R.A. Holley Effects of chitosan coating containing lysozyme or natamycin on shelf-life, microbial quality, and sensory properties of Halloumi cheese brined in normal and reduced salt solutions., 2017, 42, e13324. DOI: https://doi.org/10.1111/jfpp.13324.
172. M. Lamri; T. Bhattacharya; F. Boukid; I. Chentir; A.L. Dib; D. Das; D. Djenane; M. Gagaoua Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety., 2021, 10, 2633. DOI: https://doi.org/10.3390/foods10112633.
173. H. Babapour; H. Jalali; A.M. Nafchi The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films., 2021, 9,pp. 3893-3905. DOI: https://doi.org/10.1002/fsn3.2371.
174. A. Fayed; H. Elsayed; T. Ali Packaging fortified with Natamycin nanoparticles for hindering the growth of toxigenic Aspergillus flavus and aflatoxin production in Romy cheese., 2021, 8,pp. 58-63. DOI: https://doi.org/10.5455/javar.2021.h485.
175. A.M. Youssef; F.M. Assem; M.E. Abdel-Aziz; M. Elaaser; O.A. Ibrahim; M. Mahmoud; M.H. Abd El-Salam Development of bionanocomposite materials and its use in coating of Ras cheese., 2019, 270,pp. 467-475. DOI: https://doi.org/10.1016/j.foodchem.2018.07.114.
Tables
Table 1: List of traditional fermented dairy products by countries [1,2,3,4,8,15].
Countries | DrinkingYogurt | Spoonable Yogurt | Butter | Cheese |
---|---|---|---|---|
Algeria | Lben, Raib | - | Smen/Dhan | Bouhezza, Klila, Jben, Takammart. Aoules, Chnina (Mechouna), Madghissa, Igounanes |
Egypt | Laban Raib | Labaneh, Zabady, Kishk | Samna | Jebna adima (Mish), jebna barimili, jebna balady, arish (Karish), astanbouli, Ras/Rumy/Romi, Domiati |
Libya | Lben, Raib | - | Zebda, Smen | Jben |
Morocco | Lben, Raib | Zebda, Smen | Jben, Taklilt, Chefchaouen | |
Tunisia | Lben, Raib | - | Zebda, Smen | Jben, Rigouta, Testouri |
Lebanon | Laban | Labneh, Kishk akhdar (green Kishk) | Serdaleh, darfiyeh, Nabulsi, Halloumi, Akkawi, Balady cheese, Jebneh khadra (or shencklish), arisheh, majdouleh, mshalshleh, Halawet el jeben, | |
Syria | Lban | Balady, Akkawi, charkassiyea, jebna haloum jebna arabia, jebna baytha, majdouleh, chelel, Sürke (Shanklish), cresse cheese | ||
Palestine | Laban | Labneh, Kishk | Nabulsi, Majdouleh, Mish |
Table 2: Main features of traditionally fermented dairy milks.
Types | Products | Common Name | Description | Main Starters | References |
---|---|---|---|---|---|
Drinkable | Spontaneously Fermented Milk | Raib/Laban Rayeb | Raib is a spontaneously fermented milk. | Streptococcus termophilus, Lactococci, leuconostocs, and Lactobacillus | [27,28] |
Buttermilk | Lben in Morocco and Algeria, leben in Tunisia, Iraqi and Laban khad in Egypt | Lben is a buttermilk resulting from the churning of naturally fermented milk | Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. lactis biovar diacetylactis, Lactococcus lactis ssp. cremoris, and Lactobacillus plantarum | [29] | |
Back-slopping fermented milk | Laban, Laban Zabady | Laban is fermented using old (previous) fermentate | Streptococcus termophilus, Leuconostoc lactis, and Lactobacillus acidophilis | [26,30,31] | |
Spoonable | Fresh/Dried Fermented milk and Cereals | Kishk, keshek, kushk, Kishk Matrouh | Kishk is made with fermented milk and cereals | Streptococcus termophilus and Lactobacillus acidophilis | [32,33] |
Concentrated Fermented Milk | Labneh, Labaneh, shaneenah, Anbaris, | Labneh is made by draining Laban or Laban Zabady until reaching a creamy texture | Streptococcus termophilus, Leuconostoc lactis, and Lactobacillus acidophilis | [34,35,36] |
Table 3: Traditional cheeses.
Types | Products | Description | Starter Culture | References |
---|---|---|---|---|
Soft | Chnina | Fresh cheese with short shelf life | Back-slopping fermentation | [72] |
Testouri | Fresh and brined cheese | Rennet | [73] | |
Rigouta | Fresh cheese with short shelf life | Spontaneous fermentation of whey | [74] | |
Jben | Fresh, white cheese, slightly salty and sour | Spontaneous fermentation, plant coagulating enzymes and/or rennet | [75,76] | |
Chefchaouen | Fresh cheese | Rennet | [77] | |
Arish, kariesh | Fresh light cheese | Natural acid coagulation | [34] | |
Madghissa | Processed cheese with yellow color, and elastic texture | Back-slopping using fresh Klila | [78,79] | |
Domiati | Ripened and light-brown cheese | Spontaneous fermentation | [80] | |
Mish | Ripened and/or fresh cheese | back-slopping using fresh Karish or old Mish | [81,82] | |
Bouhezza | Ripened and spreadable cheese flavors are slightly salty, spicy, and acidic | Spontaneous fermentation | [83,84] | |
Semihard | Halloumi | Semihard to hard white brined cheese | Rennet | [85] |
Akkawi | White brined cheese | Rennet | [86] | |
Nabulsi | White brined cheese | Rennet | [87] | |
Mshalshe | Stretched-curd brined cheese | Rennet | [81,82] | |
Darfiyeh | Dried and ripened cheese | Spontaneous fermentation | [88] | |
Shankleesh | Fresh and/or dry aged cheese | Spontaneous fermentation | [3] | |
Hard | Klila | Fresh and/or dry white cheese | Spontaneous fermentation | [89] |
Takkamart | Dry brown cheese | Abomasum | [78] | |
Aoules | Dry cheese | Spontaneous fermentation | [83] | |
Taklilt | Dry cheese | Spontaneous fermentation | ||
Roumy, Rumi, Ras | Hard aged cheese | Spontaneous fermentation | [34] |
Table 4: Innovative strategies for improving dairy fermented products.
Product | Treatments | Results | References |
---|---|---|---|
Halloumi cheese | Ultrafiltration | -Increase in protein retention-Increase in the meltability and free oil | [118] |
Labneh | Ultrafiltration and addition of 2% oat | -Improvement of sensory parameters, nutritional quality and shelf life-Increase in probiotic bacteria | [119] |
Domiati cheese | Addition of Lactobacillus plantarum and Enterococcus faecium | -Prevention against Staphylococcus aureus-Improvement of the organoleptic properties, proteolysis and lipolysis | [123] |
Karish cheese | Addition of L. lactis subsp. cremoris (KM746), L. lactis subsp. lactis (KM721), L. plantarum (KP623), and L. delbrueckii subsp. lactis (KP654), Enterococcus faecium (KT712) | -Improvement of the sensorial parameters and safety against pathogens | [124] |
Labneh | Addition of probiotic bacteria | -Decrease in the fungi and psychrophilic counts | [119,127] |
Butter | Addition of encapsulated Lactobacillus acidophilus (5 and 10%) | -Increase in probiotic micro-organisms | [56] |
Akawi cheese | Addition of Lactobacillus Plantarumand partial substitution (30%) of cow milk with camel milk | -Improvement in scavenging rates, ACE-inhibition activity, antiproliferation activity and shelf life-Improvement in the rheological properties | [128,129] |
Halloumi cheese | Addition of modified maize starch as a fat replacer | -Decrease in fermentation time, pH, total solids, fat, ash, and total volatile fatty acids, and total bacterial count-Improvement of sensorial properties, yield, and protein content | [130] |
Labneh | Addition of sesame seeds (0–6%) as a fat replacer | -Increase in total solid, fat, and acidity-Decrease in the protein and ash contents | [131] |
Labneh | Substitution of 50% of milk fat with wheat germ oil encapsulated in natural casein micelles | -Improvement of physicochemical and sensorial properties | [132] |
Domiati cheese | Partial substitution of milk fat with jojoba oil | -Decrease in trans-fat and cholesterol-Improvement of the sensorial properties | [133] |
Kish | Addition of a mix of pomegranate seed oil and/or gum Arabic | -Improvement of plasma high-density lipoprotein cholesterol, blood glucose, plasma dyslipidemia, and urea parameters | [134] |
Halloumi and Nabulsi cheeses | Substitution of NaCl with KCl | -No effect on the chemical and sensorial properties | [125,126] |
Halloumi cheese | Dry salting for 24 h | -Increase in the calcium, phosphorus, magnesium, and potassium contents-Reduction in the hardness and fracturability | [105] |
Shanklish cheese | Addition of whey proteins and micellar casein (1 and 2%) | -Improvement of the nutritional profile, and overall economic efficiency-Increase in the firmness and cheese yield | [3] |
Labneh | Addition of lemon peel extracts | -Improvement of the flavor, texture, appearance, and shelf life | [140] |
Halloumi cheese, Labneh and buttermilk | Addition of moringa (2%) | -Increase in iron, protein, calcium, vitamins (C, B1, B2, and B3), protein digestibility, and shelf life | [141,142,143] |
Kishk | Addition of purslane | -Increase in mineral and protein contents | [144] |
Labneh | Addition of Lactobacillus casei and broccoli paste (5%) | -Increase in the viability of probiotic bacteria-Improvement of the nutritional properties and shelf life | [145] |
Labneh | Addition of artichoke powder | -Increase in the viability of probiotic bacteria | [146] |
Domiati cheese | Addition of Cichorium and bromelain extracts | -Improvement of nutritional and organoleptic properties | [147] |
Domiati cheese | Addition of sweet pepper extract | -Improvement of organoleptic properties | [127] |
Labneh | Addition of pepper extract encapsulated in alginate beads | -Improvement of antioxidant and organoleptic properties | [148] |
Labneh | Addition of spirulina | -Increase in the viability of probiotic bacteria, protein, dietary fiber, antioxidant activity, vitamins (B1, B9, and B12), and minerals (Fe, Zn, K, and Mg) | [149] |
Kishk | Addition of thyme oil (200 mg/kg) | -Increase in antioxidant activity-Decrease in coliform bacteria, yeast, and mold counts | [153] |
Kishk | Addition of Teucrium polium oils | -Decrease in Escherichia coli | [154] |
Domiati cheese | Addition of Propolis, ginger and thyme oils | -Decrease in pH-Inhibition of molds, yeasts and Escherichia coli-Extension of the shelf life up to 2 months | [155] |
Labneh | Addition of thyme oil nanoemulsion (0.1, 0.2 and 0.3%) | -Increase in the shelf life up to 6 weeks | [156] |
Labneh | Addition of cinnamon, eucalyptus, and wheat germ essential oils (600 µL/kg) | -Increase in the shelf life up to 6 weeks-Labneh made with cinnamon and eucalyptus were better accepted | [157] |
Kishk | Partial substitution (25 and 50%) of bulgur with faba beans | -Improvement of the amino acids profile | [161] |
Labneh | Addition of sweet lupine powder (2%) | -Improvement of the nutritional and organoleptic properties | [162] |
Domiati cheese | Use of culture pasteurized milk + 0.1% potassium sorbate | -Improvement of the organoleptic properties and safety | [163] |
Halloumi cheese | Pasteurization (65 °C, 30 min), addition of calcium chloride (0.015%), and prepress (20 min at 0.2 MPa and then press for 40 min at 0.6 Mpa) | -Improvement of the yield and overall quality of the cheese | [164] |
Halloumi cheese | Use of magnetic field | -Inhibition of the growth of spore-forming bacteria, yeasts, and molds | [165] |
Kishk | Gamma irradiation | -Decrease of pathogens, total acidity, flavor, and taste | [166] |
Labneh | Irradiation of the milk before fermentation | -Improvement of probiotic bacteria growth, antioxidant, proteolytic activities, flavor, texture, and stability during storage | [36] |
Halloumi cheese | Edible coating using mozzarella cheese whey | -Preservation of the cheese quality for 9 days | [170] |
Halloumi cheese | Edible coating using chitosan with or without lysozyme or natamycin | -Increase in the shelf life by 5 days | [171] |
Ras cheese | Edible coating using cellulose sheets fortified with natamycin-loaded alginate nanoparticles | -Reduction of A. flavus and aflatoxin growth | [174] |
Ras cheese | Edible coating using chitosan/polyvinyl alcohol/glycerol and titanium dioxide nanoparticles | -Inhibition of mold growth-Reduction of weight losses during ripening | [175] |
Domiati cheese | Modified atmosphere packaging | -Improvement of the shelf life | [80] |
Author Affiliation(s):
[1] Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari Aldo Moro, 70126 Bari, Italy
[2] Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg El Arab Technological University, Alexandria 23714, Egypt
[3] Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Application (SRTA-City), Alexandria 21934, Egypt
[4] Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
[5] Zayed Center for Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
[6] ClonBio Group, Ltd., Dublin D02 XE61, Ireland
Author Note(s):
[*] Correspondence: marina.mefleh@uniba.it (M.M.); fboukid@clonbioeng.com (F.B.)
DOI: 10.3390/fermentation8120743
COPYRIGHT 2022 MDPI AG
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2023 Gale, Cengage Learning. All rights reserved.
FAQs
What are traditional fermented dairy products? ›
Product | Alternative names | Fermentation agent |
---|---|---|
Cheese | a variety of bacteria or mold | |
Crème fraîche | creme fraiche | naturally occurring lactic acid bacteria in cream |
Cultured sour cream | sour cream | Lactococcus lactis subsp. lactis* |
Filmjölk | fil | Lactococcus lactis* and Leuconostoc |
Cultured buttermilk, sour cream, and yogurt are among the most common fermented dairy products in the Western world. Other, lesser-known products include kefir, koumiss, acidophilus milk, and new yogurts containing Bifidobacteria.
What is the history of fermented dairy products? ›Traditional fermented milk products have a long history and are known and made all over the world whenever milk animals were kept. Their production was a crude art. It was not until the days of Pasteur—about 100 years ago—that the microbiology underlying fermentations was revealed.
What is traditional fermented milk? ›Mabisi is a traditional fermented milk product from Zambia made through spontaneous fermentation of raw milk at ambient temperature using a calabash (gourd), clay pot, plastic or metal container.
What are 10 examples of traditional fermented foods? ›Different traditional fermented foods, such as yogurt, cheeses, crème fraiche, fermented sausages, sourdough bread, soy sauce, fish sauce, fermented vegetables, including “miso” (fermented soybeans), “kimchi” (fermented spicy cabbage), “sauerkraut” (fermented cabbage), and “surströmming” (fermented herring) or ...
What are 3 examples of cultured dairy products? ›Today, cultured milk products are produced by bacterial fermentation. Buttermilk, sour cream, acido- philus milk, yogurt, and some cheeses, such as blue or Roquefort and Swiss, are cultured milk products.
What are 3 examples of fermented foods? ›- Introduction. Fermented foods are defined as “foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action” [1]. ...
- Kefir. ...
- Kombucha. ...
- Sauerkraut. ...
- Fermented Soy Products (Tempeh, Natto, Miso)
Cultured dairy products include yogurt, sour cream and dips, cottage cheese, cream cheese, buttermilk, and kefir.
What is the oldest fermentation product? ›Evidence of a fermented alcoholic beverage made from fruit, honey, and rice found in Neolithic China dates back to 7000-6600 BCE. Wine-making dates to around 6000 BCE in Georgia, in the Caucasus region of Eurasia. There is also strong evidence that people were fermenting beverages in Babylon around 3000 BCE.
What were the first fermented products? ›The first fermented food was yogurt. Yogurt was fermented by humans without the use of any processing in industries.
What is the oldest fermented food? ›
The earliest archaeological evidence of fermentation is 13,000-year-old residues of a beer, with the consistency of gruel, found in a cave near Haifa in Israel.
What are the traditional fermented milk products of India? ›In India,fermented products such as Dahi(curd), MishtiDoi(sweetened curd), Shrikhand, Lassi and Chhach or Mohi (buttermilk), Chhurpi, Somar, Philu and Shyow are the known ethenic fermented products (Dewan and Tamang, 2007).
Which country fermented milk? ›Filmjölk (Swedish: [ˈfîːl. ˌmjœlk]), also known as fil, is a traditional fermented milk product from Sweden, and a common dairy product within the Nordic countries.
What is an example of a fermented cheese? ›DAIRY FERMENTATIONS. Cheeses - Cottage, Cheddar, Italian, Swiss, etc. 3-Source of beneficial bacteria (Lactobacillus acidophilus and Bifidobacterium).
What are the Arabic fermented foods? ›- Basturma. Basturma or Bastirma is traditional fermented meat prepared using minced lamb or minced beef that is mixed with several spices, salt, and garlic and stuffed in cow intestine [19]. ...
- Smoked Liban (yogurt) ...
- Aushari cheese. ...
- Turshi. ...
- Sour Khobz.
- Kefir. Kefir is a type of cultured dairy product. ...
- Tempeh. Tempeh is made from fermented soybeans that have been pressed into a compact cake. ...
- Natto. Natto is a staple probiotic food in traditional Japanese cuisine. ...
- Kombucha. ...
- Miso. ...
- Kimchi. ...
- Sauerkraut. ...
- Probiotic yogurt.
The Dairy Group includes milk, yogurt, cheese, lactose-free milk and fortified soy milk and yogurt. The Dairy Group does not include foods made from milk that have little calcium and a high fat content. Examples of this are cream cheese, sour cream, cream, and butter.
Is cottage cheese a fermented dairy product? ›Through the process of fermentation of dairy products, the bacteria help break down the lactose (a sugar) making fermented dairy foods such as kefir, yogurt, and cottage cheese (be sure to choose the fermented with active cultures!)
Is cheese fermented dairy? ›Cheeses are fermented dairy products and hence, the controlled production of lactic acid from lactose by Lactic Acid Bacteria (LAB) is an essential step during the manufacture of essentially all varieties. Milk for cheese making may be acidified by its indigenous LAB or by using a whey culture.
What are trending fermented foods? ›- Yoghurt. The classic found in everyone's fridge. ...
- Kefir. Kefir is a real “superfood”. ...
- Sourdough bread. ...
- Sauerkraut. ...
- Apple vinegar. ...
- Kimchi. ...
- Tempeh. ...
- Miso.
Is Greek yogurt fermented? ›
Both Greek and regular yogurt are fermented, but the manufacturing differs slightly. The process starts out the same. Bacteria called Lactobacillus bulgaricus and Streptococcus thermophilus are added to warm milk, and the mixture sits at approximately 110°F (about 43°C) for a few hours.
Which fermented foods have the most probiotics? ›The most common fermented foods that naturally contain probiotics, or have probiotics added to them, include yogurt, kefir, kombucha, sauerkraut, pickles, miso, tempeh, kimchi, sourdough bread and some cheeses.
What are six foods that are fermented? ›- cultured milk and yoghurt.
- wine.
- beer.
- cider.
- tempeh.
- miso.
- kimchi.
- sauerkraut.
Traditional food fermentation processes can be broadly classified into lactic acid fermentation, fungal fermentation, and alkaline fermentation.
What country eats the most fermented foods? ›If there were a country whose cuisine excels in the realm of fermented foods, it's Japan. Referred to under the catch-all term hakkо̄ (fermentation), these foods form the very basis of gastronomy in the island nation.
What dairy products have starter cultures? ›Starter cultures are an essential component of all fermented dairy foods including cheese, yoghurt, sour cream and lactic butter. The primary function of these bacteria is the conversion of lactose and other sugars in milk to lactic acid.
What is the name of fermented milk? ›Fermented milk is the collective name for products such as yoghurt, ymer, kefir, cultured buttermilk, filmjölk (Scandinavian sour milk), cultured cream and koumiss (a product based on mares' milk).
What dairy product has a culture of bacteria? ›Examples of dairy foods produced through LAB fermentations include cheeses, yogurts and sour creams such as crème fraiche. Examples of common starter LAB used in the dairy industry include Lactococcus lactis spp. lactis, L. lactis spp.
What are the two most common products of fermentation? ›While there are a number of products from fermentation, the most common are ethanol, lactic acid, carbon dioxide, and hydrogen gas (H2).
What's the 2 most commonly used types of fermentation? ›There are two types of fermentation, alcoholic fermentation and lactic acid fermentation. Our cells can only perform lactic acid fermentation; however, we make use of both types of fermentation using other organisms.
What is the most common fermentation? ›
Fermentation is the breakdown of carbs like starch and sugar by bacteria and yeast and an ancient technique of preserving food. Common fermented foods include kimchi, sauerkraut, kefir, tempeh, kombucha, and yogurt.
What are the oldest uses of fermentation? ›Since those ancient times, fermentation has been used as a tool mainly for food preservation. Starting around 5,000 B.C.E., Sumerians and Egyptians produced many foods using fermentation, such as bread, wine, and beer.
What is the oldest traditional food? ›Oldest preserved foods
Honey and alcohols, among others, have been one of the oldest found adible foods. For example ancient Egyptian honey has been found and consumed.
Bread. Bread is considered one of the staple foods. It's a cornerstone of the human diet and again, like pancakes, it's a very simple recipe using basic ingredients. All you need is flour and water which has been available to homo sapiens for millennia, making it one of the oldest known man-made foods.
What is the oldest food culture in the world? ›- Bread: 14,000 Years Old.
- Tamales: 10,000 Years Old.
- Chinese Fermented Alcohol: 9,000 Years Old.
- Chicha: 7000 Years Old.
- Popcorn: 6,500 Years Old.
- Garlic Mustard Seed Spice: 6,000 Years Old.
- Bog Butter: 5,000 Years Old.
- Mesopotamian Stew: 3750 Years Old.
Fermented milk products are created when milk ferments with specific kinds of bacteria called Lactobacilli or Bifidobacteria. Fermentation means the milk is partially digested by the bacteria. This makes the milk product easier to digest, especially for people who have milk allergies or are lactose-intolerant.
Is yogurt considered fermented milk? ›The most common examples of fermented milks are yogurt, cultured cream and buttermilk, and kefir, although many variations of these products exist based on historical practices, geography, and type of milk.
What are examples of fermented foods? ›- Introduction. Fermented foods are defined as “foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action” [1]. ...
- Kefir. ...
- Kombucha. ...
- Sauerkraut. ...
- Fermented Soy Products (Tempeh, Natto, Miso)
DAIRY FERMENTATIONS. Cheeses - Cottage, Cheddar, Italian, Swiss, etc. 3-Source of beneficial bacteria (Lactobacillus acidophilus and Bifidobacterium).
Is Chobani yogurt fermented? ›Featured | Chobani® We took the sugar out of the milk using natural fermentation, where live and active yogurt cultures and probiotics eat the sugars found in milk.
Which cheese is best for gut health? ›
Why it's good for you: Cheese lovers, rejoice: cottage cheese is a great pick for your gut. As with other fermented foods, cottage cheese often delivers probiotics (check the package labels for live and active cultures), and it's high in calcium, which is important for strong bones.
Is fermented dairy inflammatory? ›According to a review of 52 studies, fermented foods like yogurt and kefir showed the highest anti-inflammatory activity of any dairy product. This is likely because of their high content of probiotics like lactic acid bacteria and bifidobacterial, which help create a flourishing gut microbiome.